2010 Vol. 1, No. 12

News and views
Human in check: new threat from superbugs equipped with NDM-1
Xiaoxue Zhang
2010, 1(12): 1051-1052. doi: 10.1007/s13238-010-0134-7
An unforgettable debate between descriptive and experimental biology in the 1930s in China
Ming Li, Zonggang Hu, Le Kang
2010, 1(12): 1053-1055. doi: 10.1007/s13238-010-0143-6
Polycomb repressive complex 2 in embryonic stem cells: an overview
Amanda Jones, Hengbin Wang
2010, 1(12): 1056-1062. doi: 10.1007/s13238-010-0142-7
Polycomb Group Proteins (PcG) are a family of epigenetic regulators responsible for the repression of an array of genes important in development and cell fate specification. PcG proteins complex to form two types of epigenetic regulators:Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). Although the mechanisms regulating PRC2 recruitment and activity in mammals remain poorly understood, recent work has identified a non-canonical PRC2 in mouse embryonic stem cells (mESC) with unique activities required for repression of PRC2 target genes and necessary for mESC differentiation and somatic cell reprogramming. Here we review the functions of PRC2 in embryonic stem cells and explore the role of the newly identified mESC specific PRC2 regulatory subunits Jarid2 (jumonji, AT rich interactive domain 2), Mtf2 (metal response element binding transcription factor 2) and esPRC2p48.
Mdm2 links genotoxic stress and metabolism to p53
Zhongfeng Wang, Baojie Li
2010, 1(12): 1063-1072. doi: 10.1007/s13238-010-0140-9
Mouse double minute 2 (Mdm2) gene was isolated from a cDNA library derived from transformed mouse 3T3 cells, and was classified as an oncogene as it confers 3T3 and Rat2 cells tumorigenicity when overexpressed. It encodes a nucleocytoplasmic shuttling ubiquitin E3 ligase, with its main target being tumor suppressor p53, which is mutated in more than 50% of human primary tumors. Mdm2's oncogenic activity is mainly mediated by p53, which is activated by various stresses, especially genotoxic stress, via Atm (ataxia telangiectasia mutated) and Atr (Atm and Rad3-related). Activated p53 inhibits cell proliferation, induces apoptosis or senescence, and maintains genome integrity. Mdm2 is also a target gene of p53 transcription factor. Thus, Mdm2 and p53 form a feedback regulatory loop. External and internal cues, through multiple signaling pathways, can act on Mdm2 to regulate p53 levels and cell proliferation, death, and senescence. This review will focus on how Mdm2 is regulated under genotoxic stress, and by the Akt1-mTOR-S6K1 pathway that is activated by insulin, growth factors, amino acids, or energy status.
Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway
Liming Chen, Portia Gloria Loh, Haiwei Song
2010, 1(12): 1073-1083. doi: 10.1007/s13238-010-0138-3
The control of organ size growth is one of the most fundamental aspects of life. In the past two decades, a highly conserved Hippo signaling pathway has been identified as a key molecular mechanism for governing organ size regulation. In the middle of this pathway is a kinase cascade that negatively regulates the downstream component Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ)/Yorkie through phosphorylation. Phosphorylation of YAP/TAZ/Yorkie promotes its cytoplasmic localization, leads to cell apoptosis and restricts organ size overgrowth. When the Hippo pathway is inactivated, YAP/TAZ/Yorkie translocates into the nucleus to bind to the transcription enhancer factor (TEAD/TEF) family of transcriptional factors to promote cell growth and proliferation. In this review, we will focus on the structural and functional studies on the downstream transcription factor TEAD and its coactivator YAP.
Influence of glycosylation and oligomerization of vaccinia virus complement control protein on level and pattern of functional activity and immunogenicity
Girish J. Kotwal
2010, 1(12): 1084-1092. doi: 10.1007/s13238-010-0139-2
Vaccinia virus complement control protein (VCP) is one of the proteins encoded by vaccinia virus to modulate the host inflammatory response. VCP modulates the inflammatory response and protects viral habitat by inhibiting the classical and the alternative pathways of complement activation. The extended structure of VCP, mobility between its sequential domains, charge distribution and type of residues at the binding regions are factors that have been identified to influence its ability to bind to complement proteins. We report that a Lister strain of vaccinia virus encodes a VCP homolog (Lis VCP) that is functional, glycosylated, has two amino acids less than the well-characterized VCP from vaccinia virus WR strain (WR VCP), and the human smallpox inhibitor of complement enzymes (SPICE) from variola virus. The glycosylated VCP of Lister is immunogenic in contrast to the weak immunogenicity of the nonglycosylated VCP. Lis VCP is the only orthopoxviral VCP homolog found to be glycosylated, and we speculate that glycosylation influences its pattern of complement inhibition. We also correlate dimerization of VCP observed only in mammalian and baculovirus expression systems to higher levels of activity than monomers, observed in the yeast expression system.
Research articles
Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis
Wenqing Chen, Dongjing Qu, Lipeng Zhai, Meifeng Tao, Yemin Wang, Shuangjun Lin, Neil P. J. Price, Zixin Deng
2010, 1(12): 1093-1105. doi: 10.1007/s13238-010-0127-6
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11'-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.
Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein
Junyi Jiang, Hong Tang
2010, 1(12): 1106-1117. doi: 10.1007/s13238-010-0141-8
Hepatitis B virus (HBV) is regarded as a stealth virus, invading and replicating efficiently in human liver undetected by host innate antiviral immunity. Here, we show that type I interferon (IFN) induction but not its downstream signaling is blocked by HBV replication in HepG2.2.15 cells. This effect may be partially due to HBV X protein (HBx), which impairs IFNβ promoter activation by both Sendai virus (SeV) and components implicated in signaling by viral sensors. As a deubiquitinating enzyme (DUB), HBx cleaves Lys63-linked polyubiquitin chains from many proteins except TANK-binding kinase 1 (TBK1). It binds and deconjugates retinoic acid-inducible gene I (RIG I) and TNF receptor-associated factor 3 (TRAF3), causing their dissociation from the downstream adaptor CARDIF or TBK1 kinase. In addition to RIG I and TRAF3, HBx also interacts with CARDIF, TRIF, NEMO, TBK1, inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon (IKKi) and interferon regulatory factor 3 (IRF3). Our data indicate that multiple points of signaling pathways can be targeted by HBx to negatively regulate production of type I IFN.
High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation
Ruth K. Moysey, Yi Li, Samantha J. Paston, Emma E. Baston, Malkit S. Sami, Brian J. Cameron, Jessie Gavarret, Penio Todorov, Annelise Vuidepot, Steven M. Dunn, Nicholas J. Pumphrey, Katherine J. Adams, Fang Yuan, Rebecca E. Dennis, Deborah H. Sutton, Andy D. Johnson, Joanna E. Brewer, Rebecca Ashfield, Nikolai M. Lissin, Bent K. Jakobsen
2010, 1(12): 1118-1127. doi: 10.1007/s13238-010-0144-5
Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin superfamily receptor ILT2 (synonyms:LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t1/2) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8+ cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8+ CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.