Volume 4 Issue 3
Mar.  2013
Turn off MathJax
Article Contents
Yikun Yao, Youcun Qian. Expression regulation and function of NLRC5[J]. Protein&Cell, 2013, 4(3): 168-175. doi: 10.1007/s13238-012-2109-3
Citation: Yikun Yao, Youcun Qian. Expression regulation and function of NLRC5[J]. Protein&Cell, 2013, 4(3): 168-175. doi: 10.1007/s13238-012-2109-3

Expression regulation and function of NLRC5

doi: 10.1007/s13238-012-2109-3

Supported by grants from the National Natural Science Foundation of China (Grant Nos. 81230075, 30930084 and 91029708), the National Basic Research Program (973 Program) (Nos. 2013CB944904 and 2010CB529705), and Science and Technology Commission of Shanghai Municipality (No. 10JC1416600).

  • Received Date: 2012-10-30
  • Rev Recd Date: 2012-12-10
  • The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specific and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.
  • loading
  • Relative Articles

    [1] Gang Xu,  Li-na Qi,  Mei-qing Zhang,  Xue-yun Li,  Jin-long Chai,  Zhi-qing Zhang,  Xia Chen,  Qian Wang,  Ke-ran Li,  Cong Cao. Gαi1/3 mediation of Akt-mTOR activation is important for RSPO3-induced angiogenesis. Protein&Cell, 2023, 14(3): 217-222.  doi: 10.1093/procel/pwac035
    [2] Hainan Zhang,  Xiangfeng Kong,  Mingxing Xue,  Jing Hu,  Zikang Wang,  Yinghui Wei,  Haoqiang Wang,  Jingxing Zhou,  Weihong Zhang,  Mengqiu Xu,  Xiaowen Shen,  Fengcai Yin,  Zhiyuan Ai,  Guangyan Huang,  Junhui Xia,  Xueqiong Song,  Hengbin Li,  Yuan Yuan,  Jinhui Li,  Na Zhong,  Meiling Zhang,  Yingsi Zhou,  Hui Yang. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein&Cell, 2023, 14(7): 538-543.  doi: 10.1093/procel/pwac052
    [3] Kun Jia,  Zongyang Lu,  Fei Zhou,  Zhiqi Xiong,  Rui Zhang,  Zhiwei Liu,  Yu'e Ma,  Lei He,  Cong Li,  Zhen Zhu,  Dejing Pan,  Zhengxing Lian. Multiple sgRNAs facilitate base editingmediated i-stop to induce complete and precise gene disruption. Protein&Cell, 2019, 10(11): 832-839.  doi: 10.1007/s13238-019-0611-6
    [4] Lu Wang,  Xudong Liu,  Wenli Duan,  Shu-yang Zhang. “In front of patients, I will always be a pupil.” Dr. Xiaoqian Zhang: the founder of the modern Chinese gastroenterology. Protein&Cell, 2019, 10(1): 1-4.  doi: 10.1007/s13238-018-0561-4
    [5] Xiaolin Zhang,  Wei Yang,  Xinlu Wang,  Xuyuan Zhang,  Huabin Tian,  Hongyu Deng,  Liguo Zhang,  Guangxia Gao. Identification of new type I interferonstimulated genes and investigation of their involvement in IFN-β activation. Protein&Cell, 2018, 9(9): 799-807.  doi: 10.1007/s13238-018-0511-1
    [6] Xiao-xiao Xu,  Han Wan,  Li Nie,  Tong Shao,  Li-xin Xiang,  Jian-zhong Shao. RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein&Cell, 2018, 9(3): 246-253.  doi: 10.1007/s13238-017-0431-5
    [7] Jingyun Li,  Qiumei Du,  Rui Hu,  Yanbing Wang,  Xiangyun Yin,  Haisheng Yu,  Peishuang Du,  Joël Plumas,  Laurence Chaperot,  Yong-jun Liu,  Liguo Zhang. Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production. Protein&Cell, 2016, 7(4): 291-294.  doi: 10.1007/s13238-015-0239-0
    [8] Liang Chen,  Zhimin Peng,  Qinghang Meng,  Maureen Mongan,  Jingcai Wang,  Maureen Sartor,  Jing Chen,  Liang Niu,  Mario Medvedovic,  Winston Kao,  Ying Xia. Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop. Protein&Cell, 2016, 7(5): 338-350.  doi: 10.1007/s13238-015-0241-6
    [9] Wenqing Chen,  Yan Li,  Jie Li,  Lian Wu,  Yan Li,  Renxiao Wang,  Zixin Deng,  Jiahai Zhou. An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis. Protein&Cell, 2016, 7(9): 673-683.  doi: 10.1007/s13238-016-0289-y
    [10] Pin Ye,  Yunlu Jiao,  Zhenwei Li,  Liming Hua,  Jin Fu,  Feng Jiang,  Tong Liu,  Yonghua Ji. Scorpion toxin BmK I directly activates Nav1.8 in primary sensory neurons to induce neuronal hyperexcitability in rats. Protein&Cell, 2015, 6(6): 443-452.  doi: 10.1007/s13238-015-0154-4
    [11] Zhongyu Shi,  Chunling Xuan,  Huiming Han,  Xia Cheng,  Jundong Wang,  Youjun Feng,  Swaminath Srinivas,  Guangwen Lu,  George F. Gao. Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division. Protein&Cell, 2014, 5(10): 761-769.  doi: 10.1007/s13238-014-0074-8
    [12] Xuejun C. Zhang,  Jianfeng Liu,  Daohua Jiang. Why is dimerization essential for class-C GPCR function? New insights from mGluR1 crystal structure analysis. Protein&Cell, 2014, 5(7): 492-495.  doi: 10.1007/s13238-014-0062-z
    [13] Lei Xu,  Limin Yang,  Wenjun Liu. Distinct evolution process among type I interferon in mammals. Protein&Cell, 2013, 4(5): 383-392.  doi: 10.1007/s13238-013-3021-1
    [14] Miao Feng,  Zhanyu Ding,  Liang Xu,  Liangliang Kong,  Wenjia Wang,  Shi Jiao,  Zhubing Shi,  Mark I. Greene,  Yao Cong,  Zhaocai Zhou. Structural and biochemical studies of RIG-I antiviral signaling. Protein&Cell, 2013, 4(2): 142-154.  doi: 10.1007/s13238-012-2088-4
    [15] Fangfang Zhou,  Huizhe Huang,  Long Zhang. Bisindoylmaleimide I enhances osteogenic differentiation. Protein&Cell, 2012, 3(4): 311-320.  doi: 10.1007/s13238-012-2027-4
    [16] Yi-Nan Gong,  Feng Shao. Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation. Protein&Cell, 2012, 3(2): 98-105.  doi: 10.1007/s13238-012-2028-3
    [17] Feng Liu,  Jun Gu. Retinoic acid inducible gene-I, more than a virus sensor. Protein&Cell, 2011, 2(5): 351-357.  doi: 10.1007/s13238-011-1045-y
    [18] Junyi Jiang,  Hong Tang. Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein&Cell, 2010, 1(12): 1106-1117.  doi: 10.1007/s13238-010-0141-8
    [19] Zhiqiang Mi,  Jihuan Fu,  Yanbao Xiong,  Hong Tang. SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein&Cell, 2010, 1(3): 275-283.  doi: 10.1007/s13238-010-0030-1
    [20] Jason W. K. Goh,  Yen Seah Tan,  Alister W. Dodds,  Kenneth B. M. Reid,  Jinhua Lu. The class A macrophage scavenger receptor type I (SR-AI) recognizes complement iC3b and mediates NF-κB activation. Protein&Cell, 2010, 1(2): 174-187.  doi: 10.1007/s13238-010-0020-3
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (256) PDF downloads(1010) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint