Volume 9 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han, Yelei Guo. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein&Cell, 2018, 9(6): 516-526. doi: 10.1007/s13238-017-0394-6
Citation: Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han, Yelei Guo. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein&Cell, 2018, 9(6): 516-526. doi: 10.1007/s13238-017-0394-6

Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment

doi: 10.1007/s13238-017-0394-6
Funds:  This research was supported by the grants from the National Natural Science Foundation of China (Grant No. 81230061 to WDH), the Science and Technology Planning Project of Beijing City (No. Z151100003915076 to WDH), the National Key Research and Development Program of China (No. 2016YFC1303501 and 2016YFC1303504 to WDH), and the Nursery Innovation Fund (No. 15KMM50 to YLG).
More Information
  • Corresponding author: Weidong Han, hanwdrsw69@yahoo.com
  • Received Date: 2016-12-21
  • Accepted Date: 2017-02-23
  • Publish Date: 2018-01-01
  • Cancer stem cells (CSCs), a subpopulation of tumor cells, have self-renewal and multi-lineage differentiation abilities that play an important role in cancer initiation, maintenance, and metastasis. An accumulation of evidence indicates that CSCs can cause conventional therapy failure and cancer recurrence because of their treatment resistance and self-regeneration characteristics. Therefore, approaches that specifically and efficiently eliminate CSCs to achieve a durable clinical response are urgently needed. Currently, treatments with chimeric antigen receptor-modified T (CART) cells have shown successful clinical outcomes in patients with hematologic malignancies, and their safety and feasibility in solid tumors was confirmed. In this review, we will discuss in detail the possibility that CART cells inhibit CSCs by specifically targeting their cell surface markers, which will ultimately improve the clinical response for patients with various types of cancer. A number of viewpoints were summarized to promote the application of CSC-targeted CART cells in clinical cancer treatment. This review covers the key aspects of CSC-targeted CART cells against cancers in accordance with the premise of the model, from bench to bedside and back to bench.
  • loading
  • [1]
    Ades F, Yamaguchi N (2015) WHO, RECIST, and immune-related response criteria:is it time to revisit pembrolizumab results? Ecancermedicalscience 9:604
    [2]
    Ahmed N, Brawley VS, Hegde M et al (2015) Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33:1688-1696
    [3]
    Alamgeer M, Peacock CD, Matsui W et al (2013) Cancer stem cells in lung cancer:Evidence and controversies.Respirology 18:757-764
    [4]
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983-3988
    [5]
    Ang W, Li Z, Chi Z et al (2017) Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis. Oncotarget. doi:10.18632/oncotarget.14592
    [6]
    Baba T, Convery PA, Matsumura N et al (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28:209-218
    [7]
    Bakalova R, Ohba H, Zhelev Z et al (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360-1361
    [8]
    Bidlingmaier S, Zhu X, Liu B (2008) The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl). 86:1025-1032
    [9]
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730-737
    [10]
    Bruce WR, Van Der Gaag HA (1963) Quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79-80
    [11]
    Budde LE, Berger C, Lin Y et al (2013) Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS ONE 8:e82742
    [12]
    Chao MP, Tang C, Pachynski RK et al (2011a) Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 118:4890-4901
    [13]
    Chao MP, Alizadeh AA, Tang C et al (2011b) Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 71:1374-1384
    [14]
    Chen Y, Song J, Jiang Y et al (2015) Predictive value of CD44 and CD24 for prognosis and chemotherapy response in invasive breast ductal carcinoma. Int J Clin Exp Pathol 8:11287-11295
    [15]
    Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946-10951
    [16]
    Corbeil D, Marzesco AM, Wilsch-Brauninger M et al (2010) The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro) epithelial cell differentiation. FEBS Lett 584:1659-1664
    [17]
    Dai H, Zhang W, Li X et al (2015) Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncoimmunology 4:e1027469
    [18]
    Deng Z, Wu Y, Ma W et al (2015) Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol 16:1
    [19]
    Dragu DL, Necula LG, Bleotu C et al (2015) Therapies targeting cancer stem cells:Current trends and future challenges. World J Stem Cells 26:1185-1201
    [20]
    Edris B, Weiskopf K, Volkmer AK et al (2012) Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc Natl Acad Sci USA 109:6656-6661
    [21]
    Feldmann G, Dhara S, Fendrich V et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combinationtherapy in solid cancers. Cancer Res 67:2187-2196
    [22]
    Feng K, Guo Y, Dai H et al (2016) Chimeric antigen receptormodified T cells for the immunotherapy of patients with EGFRexpressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci 59:468-479
    [23]
    Feng K, Guo Y, Liu Y et al (2017) Cocktail treatment with EGFRspecific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol 10:4
    [24]
    Focosi D, Bestagno M, Burrone O et al (2010) CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 87:107-116
    [25]
    Frank NY, Schatton T, Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120:41-50
    [26]
    Fukuda K, Saikawa Y, Ohashi M et al (2009) Tumor initiating potential of side population cells in human gastric cancer. Int J Oncol 34:1201-1207
    [27]
    Garfall AL, Maus MV, Hwang WT et al (2015) Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med 373:1040-1047
    [28]
    Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555-567
    [29]
    Gires O, Klein CA, Baeuerle PA (2009) On the abundance of EpCAM on cancer stem cells. Nat Rev Cancer 9:143
    [30]
    Grada Z, Hegde M, Byrd T et al (2013) TanCAR:a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105
    [31]
    Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-Tcell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86:10024-10028
    [32]
    Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptormodified T cells for acute lymphoid leukemia. N Engl J Med 368:1509-1518
    [33]
    Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells:mirage or reality? Nat Med 15:1010-1012
    [34]
    Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178-15183
    [35]
    Hibi K, Sakata M, Kitamura YH et al (2010) Demethylation of the CD133 gene is frequently detected in early gastric carcinoma. Anticancer Res 30:1201-1203
    [36]
    Hodi FS, O'Day SJ, McDermott DF et al (2010) Improved survivalwith ipilimumab in patientswithmetastaticmelanoma. N Engl J Med 363:711-723
    [37]
    Hong IS, Jang GB, Lee HY et al (2015) Targeting cancer stem cells by using the nanoparticles. Int J Nanomed 10(Spec Iss):251-260
    [38]
    Hoos A, Eggermont AM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388-1397
    [39]
    Hoos A, Wolchok JD, Humphrey RW et al (2015) CCR 20th anniversary commentary:immune-related response criteria-capturing clinical activity in immuno-oncology. Clin Cancer Res 21:4989-4991
    [40]
    Jain A, Jain SK (2008) In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci 35:404-416
    [41]
    Jain A, Jain SK, Ganesh N et al (2010) Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine 6:179-190
    [42]
    Jensen MC, Riddell SR (2015) Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 33:9-15
    [43]
    Julien S, Merino-Trigo A, Lacroix L et al (2012) Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 18(19):5314-5328
    [44]
    Kastan MB, Schlaffer E, Russo JE et al (1990) Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75:1947-1950
    [45]
    Kershaw MH, Westwood JA, Darcy PK (2013) Gene-engineered T cells for cancer therapy. Nat Rev Cancer 13:525-541
    [46]
    Khaleghi S, Rahbarizadeh F, Ahmadvand D et al (2012) A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol 95:434-444
    [47]
    Khan N, Mukhtar H (2015) Dietary agents for prevention and treatment of lung cancer. Cancer Lett 359:155-164
    [48]
    Kim D, Wang J, Willingham SB et al (2012) Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 26:2538-2545
    [49]
    Kim MS, Ma JS, Yun H et al (2015) Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc 137:2832-2835
    [50]
    Kochenderfer JN, Dudley ME, Kassim SH et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33:540-549
    [51]
    Lamers CH, Sleijfer S, van Steenbergen S et al (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells:clinical evaluation and management of on-target toxicity. Mol Ther 21:904-912
    [52]
    Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645-648
    [53]
    Lee DW, Gardner R, Porter DL et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188-195
    [54]
    Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030-1037
    [55]
    Lingala S, Cui YY, Chen X et al (2010) Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp Mol Pathol 89:27-35
    [56]
    Liu J, Jiang G (2006) CD44 and hematologic malignancies. Cell Mol Immunol 3:359-365
    [57]
    Lu JW, Chang JG, Yeh KT et al (2011) Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochem 113:833-838
    [58]
    Ma S, Chan KW, Hu L et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542-2556
    [59]
    Ma ZL, Chen YP, Song JL et al (2015) Knock-down of CD24 inhibits proliferation, invasion and sensitizes breast cancer MCF-7 cells to tamoxifen in vitro. Eur Rev Med Pharmacol Sci 19:2394-2399
    [60]
    Majeti R, Chao MP, Alizadeh AA et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286-299
    [61]
    Marchitti SA, Brocker C, Stagos D et al (2008) Non-P450 aldehyde oxidizing enzymes:the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 4:697-720
    [62]
    Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507
    [63]
    Mitra M, Kandalam M, Verma RS et al (2010) Genome-wide changes accompanying the knockdown of Ep-CAM in retinoblastoma. Mol Vis 16:828-842
    [64]
    Morgan RA, Yang JC, Kitano M et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843-851
    [65]
    Munz M, Baeuerle PA, Gires O (2009) The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 69:5627-5629
    [66]
    Naujokat C (2012) Targeting human cancer stem cells with monoclonal antibodies. J Clin Cell Immunol S5:7
    [67]
    O'Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106-110
    [68]
    Ogura E, Senzaki H, Yoshizawa K et al (1998) Immunohistochemical localization of epithelial glycoprotein EGP-2 and carcinoembryonic antigen in normal colonic mucosa and colorectal tumors. Anticancer Res 18:3669-3675
    [69]
    Osta WA, Chen Y, Mikhitarian K et al (2004) EpCAM is overexpressed inbreast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64:5818-5824
    [70]
    Pan Q, Li Q, Liu S et al (2015) Concise review:targeting cancer stem cells using immunologic approaches. Stem Cells 33:2085-2092
    [71]
    Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725-733
    [72]
    Rege TA, Hagood JS (2006) Thy-1 as a regulator of cell-cell and cellmatrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20:1045-1054
    [73]
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105-111
    [74]
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111-115
    [75]
    Rosfjord E, Lucas J, Li G et al (2014) Advances in patient-derived tumor xenografts:From target identification to predicting clinical response rates in oncology. Biochem Pharmacol 91(2):135-143
    [76]
    Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3:388-398
    [77]
    Salomon J, Goulet O, Canioni D et al (2014) Genetic characterization of congenital tufting enteropathy:epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet 133:299-310
    [78]
    Savona MR, Malcovati L, Komrokji R et al (2015) An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (mds/mpn) in adults. Blood 125:1857-1865
    [79]
    Schmidt M, Scheulen ME, Dittrich C et al (2010) An open-label, randomized phase Ⅱ study of adecatumumab, a fully human antiEpCAM antibody, as monotherapy in patients with metastatic breast cancer. Ann Oncol 21:275-282
    [80]
    Shigdar S, Lin J, Yu Y, Pastuovic M et al (2011) RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci 102:991-998
    [81]
    Shmelkov SV, St Clair R, Lyden D et al (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37:715-719
    [82]
    Skubitz AP, Taras EP, Boylan KL et al (2013) Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol 130:579-587
    [83]
    Smith LM, Nesterova A, Ryan MC et al (2008) CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer 99:100-109
    [84]
    Song G, Liao X, Zhou L et al (2004) HI44a, an anti-CD44 monoclonal antibody, induces differentiation and apoptosis of human acute myeloid leukemia cells. Leuk Res 28:1089-1096
    [85]
    Song Y, Zhu Z, An Y et al (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85:4141-4149
    [86]
    Stewart BW, Wild C, International Agency for Research on Cancer and World Health Organization (2014) World cancer report 2014. International Agency for Research on Cancer WHO Press, Lyon, France/Geneva, Switzerland
    [87]
    Strioga M, Pasukoniene V, Characiejus D (2011) CD8+ CD28- and CD8+CD57+ T cells and their role in health and disease. Immunology 134:17-32
    [88]
    Su YJ, Lin WH, Chang YW et al (2015) Polarized cell migration induces cancer type-specific CD133/integrin/Src/Akt/GSK3β/β-catenin signaling required for maintenance of cancer stem cell properties. Oncotarget 6:38029-38045
    [89]
    Sukowati CH, Anfuso B, Torre G et al (2013) The expression of CD90/Thy-1 in hepatocellular carcinoma:an in vivo and in vitro study. PLoS ONE 8:e76830
    [90]
    Swaminathan SK, Roger E, Toti U et al (2013) CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 171:280-287
    [91]
    Tang KH, Dai YD, Tong M et al (2013) A CD90(+) tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer. Cancer Res 73:2322-2332
    [92]
    Till BG, Jensen MC, Wang J et al (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains:pilot clinical trial results. Blood 119:3940-3950
    [93]
    Van der Gun BT, Melchers LJ, Ruiters MH et al (2010) EpCAM in carcinogenesis:the good, the bad or the ugly. Carcinogenesis 31:1913-1921
    [94]
    Visus C, Wang Y, Lozano-Leon A et al (2011) Targeting ALDH bright human carcinoma-initiating cells with ALDH1A1-Specific CD8+ T cells. Clin Cancer Res 17:6174-6184
    [95]
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours:accumulating evidence and unresolved questions. Nat Rev Cancer 8:755-768
    [96]
    Wang L, Su W, Liu Z et al (2012) CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 33:5107-5114
    [97]
    Wang Y, Zhang WY, Han QW et al (2014) Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptormodified T cells. Clin Immunol 155:160-175
    [98]
    Wang QS, Wang Y, Lv HY et al (2015a) Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 23:184-191
    [99]
    Wang X, Liu Y, Zhou K et al (2015b) Isolation and characterization of CD105+/CD90+ subpopulation in breast cancer MDA-MB-231 cell line. Int J Clin Exp Pathol 8:5105-5112
    [100]
    Willingham SB, Volkmer JP, Gentles AJ et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109:6662-6667
    [101]
    Wolchok JD, Hoos A, O'Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors:immunerelated response criteria. Clin Cancer Res 15:7412-7420
    [102]
    Woo SR, Oh YT, An JY et al (2015) Glioblastoma specific antigens, GD2 and CD90, are not involved in cancer stemness. Anat Cell Biol 48:44-53
    [103]
    Wu RC, Liu S, Chacon JA et al (2012) Detection and characterization of a novel subset of CD8(+) CD57(+) T cells in metastatic melanoma with an incompletely differentiated phenotype. Clin Cancer Res 18:2465-2477
    [104]
    Wu CY, Roybal KT, Puchner EM et al (2015) Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350:4077
    [105]
    Yamashita T, Wang XW (2013) Cancer stem cells in the development of liver cancer. J Clin Invest 123:1911-1918
    [106]
    Yee C, Thompson JA, Byrd D et al (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma:in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168-16173
    [107]
    Yi JM, Tsai HC, Glöckner SC et al (2008) Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res 68:8094-8103
    [108]
    Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002-5012
    [109]
    Zhang Q, Shi S, Yen Y et al (2010) A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett 289:151-160
    [110]
    Zhang C, Zhou C, Wu XJ et al (2014a) Human CD133-positive hematopoietic progenitor cells initiate growth and metastasis of colorectal cancer cells. Carcinogenesis 35:2771-2777
    [111]
    Zhang YH, Wang ZY, Hao FY et al (2014b) Cluster of differentiation 24 monoclonal antibody induces apoptosis in the osteosarcoma cells. Eur Rev Med Pharmacol Sci 18:2038-2041
    [112]
    Zhao L, Yang Y, Zhou P et al (2015) Targeting CD133 high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody. J Immunother 38:217-228
    [113]
    Zhu J, Thakolwiboon S, Liu X et al (2014) Overexpression of CD90(Thy-1) in pancreatic adenocarcinoma present in the tumor microenvironment. PLoS ONE 9:e115507
    [114]
    Zhu X, Prasad S, Gaedicke S et al (2015) Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget 6:171-184
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (278) PDF downloads(2703) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return