Volume 8 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein&Cell, 2017, 8(9): 634-643. doi: 10.1007/s13238-017-0410-x
Citation: Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein&Cell, 2017, 8(9): 634-643. doi: 10.1007/s13238-017-0410-x

Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9

doi: 10.1007/s13238-017-0410-x
Funds:

This work was supported by a US National Institutes of Health (NIH) Grants YZ (2R01CA120409).

  • Received Date: 2017-02-07
  • Rev Recd Date: 2017-03-30
  • The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.
  • loading
  • Relative Articles

    [1] Peng Yin,  Shihua Li,  Xiao-Jiang Li,  Weili Yang. New pathogenic insights from large animal models of neurodegenerative diseases. Protein&Cell, 2022, 13(10): 707-720.  doi: 10.1007/s13238-022-00912-8
    [2] Hongxin Huang,  Xin Zhang,  Jie Lv,  Hongcheng Yang,  Xinlong Wang,  Shufeng Ma,  Ruoyang Shao,  Xin Peng,  Ying Lin,  Zhili Rong. Cell-cell contact-induced gene editing/ activation in mammalian cells using a synNotch-CRISPR/Cas9 system. Protein&Cell, 2020, 11(4): 299-303.  doi: 10.1007/s13238-020-00690-1
    [3] Si Wang,  Zheying Min,  Qianzhao Ji,  Lingling Geng,  Yao Su,  Zunpeng Liu,  Huifang Hu,  Lixia Wang,  Weiqi Zhang,  Keiichiro Suzuiki,  Yu Huang,  Puyao Zhang,  Tie-Shan Tang,  Jing Qu,  Yang Yu,  Guang-Hui Liu,  Jie Qiao. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein&Cell, 2020, 11(1): 1-22.  doi: 10.1007/s13238-019-0623-2
    [4] Jianxia Zhou,  Liyuan Jin,  Fuping Wang,  Yuan Zhang,  Bing Liu,  Tongbiao Zhao. Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects. Protein&Cell, 2019, 10(10): 764-769.  doi: 10.1007/s13238-019-0643-y
    [5] Haibo Li,  Chaoran Zhao,  Jun Xu,  Yaxing Xu,  Chunmei Cheng,  Yinan Liu,  Ting Wang,  Yaqin Du,  Liangfu Xie,  Jingru Zhao,  Yanchuang Han,  Xiaobao Wang,  Yun Bai,  Hongkui Deng. Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. Protein&Cell, 2019, 10(1): 20-30.  doi: 10.1007/s13238-018-0556-1
    [6] Kaichao Feng,  Yang Liu,  Yelei Guo,  Jingdan Qiu,  Zhiqiang Wu,  Hanren Dai,  Qingming Yang,  Yao Wang,  Weidong Han. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein&Cell, 2018, 9(10): 838-847.  doi: 10.1007/s13238-017-0440-4
    [7] Dongfang Liu,  Shuo Tian,  Kai Zhang,  Wei Xiong,  Ndongala Michel Lubaki,  Zhiying Chen,  Weidong Han. Erratum to: Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein&Cell, 2018, 9(10): 902-902.  doi: 10.1007/s13238-017-0427-1
    [8] Diane DiEuliis,  James Giordano. Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity. Protein&Cell, 2018, 9(3): 239-240.  doi: 10.1007/s13238-017-0493-4
    [9] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han, Yelei Guo. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment. Protein&Cell, 2018, 9(6): 516-526.  doi: 10.1007/s13238-017-0394-6
    [10] Yanjing Song,  Chuan Tong,  Yao Wang,  Yunhe Gao,  Hanren Dai,  Yelei Guo,  Xudong Zhao,  Yi Wang,  Zizheng Wang,  Weidong Han,  Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein&Cell, 2018, 9(10): 867-878.  doi: 10.1007/s13238-017-0384-8
    [11] Jingjin He,  Thanutra Zhang,  Xuemei Fu. Using a novel cellular platform to optimize CRISPR/CAS9 technology for the gene therapy of AIDS. Protein&Cell, 2017, 8(11): 848-852.  doi: 10.1007/s13238-017-0453-z
    [12] Xiaojun Liu,  Shuguang Jiang,  Chongyun Fang,  Hua Li,  Xuhua Zhang,  Fuqin Zhang,  Carl H. June,  Yangbing Zhao. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation. Protein&Cell, 2017, 8(7): 514-526.  doi: 10.1007/s13238-017-0422-6
    [13] Lixia Wang,  Fei Yi,  Lina Fu,  Jiping Yang,  Si Wang,  Zhaoxia Wang,  Keiichiro Suzuki,  Liang Sun,  Xiuling Xu,  Yang Yu,  Jie Qiao,  Juan Carlos Izpisua Belmonte,  Ze Yang,  Yun Yuan,  Jing Qu,  Guang-Hui Liu. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein&Cell, 2017, 8(5): 365-378.  doi: 10.1007/s13238-017-0397-3
    [14] Zhenguang Wang,  Yelei Guo,  Weidong Han. Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein&Cell, 2017, 8(12): 896-925.  doi: 10.1007/s13238-017-0400-z
    [15] Dongfang Liu,  Shuo Tian,  Kai Zhang,  Wei Xiong,  Ndongala Michel Lubaki,  Zhiying Chen,  Weidong Han. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein&Cell, 2017, 8(12): 861-877.  doi: 10.1007/s13238-017-0415-5
    [16] Hua Li,  Yangbing Zhao. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein&Cell, 2017, 8(8): 573-589.  doi: 10.1007/s13238-017-0411-9
    [17] Linlin Li,  Fei Gao,  Sen Wu. An episomal CRISPR/Cas9 system to derive vector-free gene modified mammalian cells. Protein&Cell, 2016, 7(9): 689-691.  doi: 10.1007/s13238-016-0299-9
    [18] Liping Deng,  Ruotong Ren,  Jun Wu,  Keiichiro Suzuki,  Juan Carlos Izpisua Belmote,  Guang-Hui Liu. CRISPR/Cas9 and TALE: beyond cut and paste. Protein&Cell, 2015, 6(3): 157-159.  doi: 10.1007/s13238-015-0137-5
    [19] Puping Liang,  Yanwen Xu,  Xiya Zhang,  Chenhui Ding,  Rui Huang,  Zhen Zhang,  Jie Lv,  Xiaowei Xie,  Yuxi Chen,  Yujing Li,  Ying Sun,  Yaofu Bai,  Zhou Songyang,  Wenbin Ma,  Canquan Zhou,  Junjiu Huang. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein&Cell, 2015, 6(5): 363-372.  doi: 10.1007/s13238-015-0153-5
    [20] Huibi Cao,  Robert S. Molday,  Jim Hu. Gene therapy: light is finally in the tunnel. Protein&Cell, 2011, 2(12): 973-989.  doi: 10.1007/s13238-011-1126-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (401) PDF downloads(8118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return