Volume 10 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
Xiaoya Zhang, Xiaohong Peng, Chengsheng Han, Wenzhen Zhu, Lisi Wei, Yulin Zhang, Yi Wang, Xiuqin Zhang, Hao Tang, Jianshe Zhang, Xiaojun Xu, Fengping Feng, Yanhong Xue, Erlin Yao, Guangming Tan, Tao Xu, Liangyi Chen. A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies[J]. Protein&Cell, 2019, 10(4): 306-311. doi: 10.1007/s13238-018-0575-y
Citation: Xiaoya Zhang, Xiaohong Peng, Chengsheng Han, Wenzhen Zhu, Lisi Wei, Yulin Zhang, Yi Wang, Xiuqin Zhang, Hao Tang, Jianshe Zhang, Xiaojun Xu, Fengping Feng, Yanhong Xue, Erlin Yao, Guangming Tan, Tao Xu, Liangyi Chen. A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies[J]. Protein&Cell, 2019, 10(4): 306-311. doi: 10.1007/s13238-018-0575-y

A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies

doi: 10.1007/s13238-018-0575-y
Funds:

This work was supported by grants from the National Key R&D Program of China (Grant Nos. 2017YFA0504700 and 2016YFA0500400), the National Natural Science Foundation of China (Grant Nos. 31570839, 31661143041, 61472395, 31327901, 31521062 and 31730054), the Beijing Natural Science Foundation (L172003) and Joint Program between Chinese Academy of Sciences and Peking University.

  • loading
  • [1]
    Briggman KL, Bock DD (2012) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22:154-161
    [2]
    Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggrern PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334-2339
    [3]
    Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40:834-848
    [4]
    Diaz E, Ayala G, Diaz ME, Gong LW, Toomre D (2010) Automatic detection of large dense-core vesicles in secretory cells and statistical analysis of their intracellular distribution. IEEE-ACM Trans Comput Biol Bioinform 7:2-11
    [5]
    Jegou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu:fully convolutional DenseNets for semantic segmentation. In 2017 IEEE conference on computer vision and pattern recognition workshops (Cvprw), pp 1175-1183
    [6]
    Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640-651
    [7]
    MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 4:283-290
    [8]
    Masini M, Marselli L, Bugliani M, Martino L, Masiello P, Marchetti P, De Tata V (2012) Ultrastructural morphometric analysis of insulin secretory granules in human type 2 diabetes. Acta Diabetol 49(Suppl 1):S247-S252
    [9]
    Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T (2006) Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 55:435-440
    [10]
    Ronneberger O, Fischer P, Brox T (2015) U-Net:convolutional networks for biomedical image segmentation. In medical image computing and computer-assisted intervention-MICCAI 2015, pp 234-241
    [11]
    Smith TC, Frank E (2016) Introducing machine learning concepts with WEKA. Methods Mol Biol 1418:353-378
    [12]
    Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE Conf Comput Vis Pattern Recognit 2015:1-9
    [13]
    Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, Maayan I, Tanouchi Y, Ashley EA, Covert MW (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput Biol 12:e1005177
    [14]
    Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656-1668
    [15]
    Xue YH, Zhao W, Du W, Zhang X, Ji G, Ying W, Xu T (2012) Ultrastructural study of insulin granules in pancreatic beta-cells of db/db mouse by scanning transmission electron microscopy tomography. Protein Cell 3:521-525
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (630) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return