Volume 11 Issue 5
May  2020
Turn off MathJax
Article Contents
Shuxiang Xu, Jinchul Kim, Qingshuang Tang, Qu Chen, Jingfeng Liu, Yang Xu, Xuemei Fu. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway[J]. Protein&Cell, 2020, 11(5): 352-365. doi: 10.1007/s13238-020-00699-6
Citation: Shuxiang Xu, Jinchul Kim, Qingshuang Tang, Qu Chen, Jingfeng Liu, Yang Xu, Xuemei Fu. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway[J]. Protein&Cell, 2020, 11(5): 352-365. doi: 10.1007/s13238-020-00699-6

CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway

doi: 10.1007/s13238-020-00699-6
Funds:

We thank Dr. Qingjiao Li for help with data analysis. This study was supported by the a grant from the National High-tech R&D Program (863 Program No. 2015AA020310), National Natural Science Foundation of China (Nos. 815300045, 91959204, 81930084, 81871197, U1601222), the leading talents of Guangdong Province Program (No. 00201516), a grant from the Key Research and Development Program of Guangdong Province (2019B020235003), Major basic research developmental project of the Natural Science Foundation of Guangdong Province (2014A030308018), Development and Reform Commission of Shenzhen Municipality (S2016004730009), and Shenzhen “Sanming” Project of Medicine (SZSM201602102).

  • Received Date: 2019-08-11
  • Rev Recd Date: 2020-01-19
  • With its high efficiency for site-specific genome editing and easy manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (CAS9) system has become the most widely used gene editing technology in biomedical research. In addition, significant progress has been made for the clinical development of CRISPR/CAS9 based gene therapies of human diseases, several of which are entering clinical trials. Here we report that CAS9 protein can function as a genome mutator independent of any exogenous guide RNA (gRNA) in human cells, promoting genomic DNA double-stranded break (DSB) damage and genomic instability. CAS9 interacts with the KU86 subunit of the DNA-dependent protein kinase (DNA-PK) complex and disrupts the interaction between KU86 and its kinase subunit, leading to defective DNA-PK-dependent repair of DNA DSB damage via non-homologous end-joining (NHEJ) pathway. XCAS9 is a CAS9 variant with potentially higher fidelity and broader compatibility, and dCAS9 is a CAS9 variant without nuclease activity. We show that XCAS9 and dCAS9 also interact with KU86 and disrupt DNA DSB repair. Considering the critical roles of DNA-PK in maintaining genomic stability and the pleiotropic impact of DNA DSB damage responses on cellular proliferation and survival, our findings caution the interpretation of data involving CRISPR/CAS9-based gene editing and raise serious safety concerns of CRISPR/CAS9 system in clinical application.
  • loading
  • [1]
    Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933-941
    [2]
    Chen J, Li WJ, Cui K, Ji KY, Xu SX, Xu Y (2018) Artemisitene suppresses tumorigenesis by inducing DNA damage through deregulating c-Myc-topoisomerase pathway. Oncogene 37:5079-5087
    [3]
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823
    [4]
    Davis AJ, Chen BPC, Chen DJ (2014) DNA-PK:a dynamic enzyme in a versatile DSB repair pathway. DNA Repair 17:21-29
    [5]
    Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S et al (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384-389
    [6]
    Gilbert Luke A, Larson Matthew H, Morsut L, Liu Z, Brar Gloria A, Torres Sandra E, Stern-Ginossar N, Brandman O, Whitehead Evan H, Doudna Jennifer A et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442-451
    [7]
    Gomez-Cabello D, Jimeno S, Fernández-Ávila MJ, Huertas P (2013) New tools to study DNA double-strand break repair pathway choice. PLoS ONE 8:e77206
    [8]
    Guo XG, Chavez A, Tung A, Chan Y, Kaas C, Yin Y, Cecchi R, Garnier SL, Kelsic ED, Schubert M et al (2018) High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast. Nat Biotechnol 36:540-546
    [9]
    Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24:927-930
    [10]
    Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839-842
    [11]
    Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57-63
    [12]
    Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye CY et al (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24:939-946
    [13]
    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071-1078
    [14]
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821
    [15]
    Kang J, Bronson RT, Xu Y (2002) Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21:1447-1455
    [16]
    Kim J, Yu LL, Chen WC, Xu YX, Wu M, Todorova D, Tang QS, Feng BB, Jiang L, He JJ et al (2019) Wild-type p53 promotes cancer metabolic switch by inducing PUMA-dependent suppression of oxidative phosphorylation. Cancer Cell 35:191-203
    [17]
    Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20-36
    [18]
    Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765-771
    [19]
    Lei L, Chen H, Xue W, Yang B, Hu B, Wei J, Wang L, Cui Y, Li W, Wang J et al (2018) APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks. Nat Struct Mol Biol 25:45-52
    [20]
    Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165-171 Epub 2004 Dec 2026
    [21]
    Maeder ML, Linder SJ, Cascio VM, Fu YF, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977-979
    [22]
    Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957-963
    [23]
    Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks:the increasing spectrum of non-homologous end joining pathways. Mut Res 711:61-72
    [24]
    Murovec J, Pirc Z, Yang B (2017) New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J 15:917-926
    [25]
    Song H, Chung SK, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6:80-89
    [26]
    Tan EP, Li YL, Velasco-Herrera MD, Yusa K, Bradley A (2015) Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Genesis 53:225-236
    [27]
    Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BPC, Chen DJ (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177:219-229
    [28]
    Urnov FD (2018) Ctrl-Alt-inDel:genome editing to reprogram a cell in the clinic. Curr Opin Genet Dev 52:48-56
    [29]
    WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC (2018) Precision gene editing technology and applications in nephrology. Nat Rev Nephrol 14:663-677
    [30]
    Xiong J, Todorova D, Su NY, Kim J, Lee PJ, Shen Z, Briggs SP, Xu Y (2015) Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. J Cell Biol 208:513-520
    [31]
    Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, Volz Sara E, Joung J, van der Oost J, Regev A et al (2015) Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759-771
    [32]
    Zhu J, Ming C, Fu X, Duan YO, Hoang DA, Rutgard J, Zhang RZ, Wang WQ, Hou R, Zhang D et al (2019) Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors (vol 27, pg 830, 2017). Cell Res 29:337-337
  • Relative Articles

    [1] Yu Chen,  Zhen Cui,  Zhixi Chen,  Ying Jiang,  Zhiyong Mao. IDDoR: a novel reporter mouse system for simultaneous and quantitative in vivo analysis of both DNA double-strand break repair pathways. Protein&Cell, 2023, 14(5): 369-375.  doi: 10.1093/procel/pwac001
    [2] Yunxiang Yang,  Pan Yang,  Nan Wang,  Zhonghao Chen,  Dan Su,  Z. Hong Zhou,  Zihe Rao,  Xiangxi Wang. Architecture of the herpesvirus genomepackaging complex and implications for DNA translocation. Protein&Cell, 2020, 11(5): 339-351.  doi: 10.1007/s13238-020-00710-0
    [3] Lin-Yong Zhao,  Jinghui Song,  Yibin Liu,  Chun-Xiao Song,  Chengqi Yi. Mapping the epigenetic modifications of DNA and RNA. Protein&Cell, 2020, 11(11): 792-808.  doi: 10.1007/s13238-020-00733-7
    [4] Pengyan Xia,  Shuo Wang,  Pu Gao,  Guangxia Gao,  Zusen Fan. DNA sensor cGAS-mediated immune recognition. Protein&Cell, 2016, 7(11): 777-791.  doi: 10.1007/s13238-016-0320-3
    [5] Chunju Fang,  Xiawei Wei,  Yuquan Wei. Mitochondrial DNA in the regulation of innate immune responses. Protein&Cell, 2016, 7(1): 11-16.  doi: 10.1007/s13238-015-0222-9
    [6] Yu Xue,  Yongbo Wang,  Hui Shen. Ray Wu, fifth business or father of DNA sequencing?. Protein&Cell, 2016, 7(7): 467-470.  doi: 10.1007/s13238-016-0271-8
    [7] Liping Deng,  Ruotong Ren,  Jun Wu,  Keiichiro Suzuki,  Juan Carlos Izpisua Belmote,  Guang-Hui Liu. CRISPR/Cas9 and TALE: beyond cut and paste. Protein&Cell, 2015, 6(3): 157-159.  doi: 10.1007/s13238-015-0137-5
    [8] Caiguo Zhang,  Fan Zhang. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein&Cell, 2015, 6(2): 88-100.  doi: 10.1007/s13238-014-0119-z
    [9] Zhili Rong,  Shengyun Zhu,  Yang Xu,  Xuemei Fu. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein&Cell, 2014, 5(4): 258-260.  doi: 10.1007/s13238-014-0032-5
    [10] Caiguo Zhang. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein&Cell, 2014, 5(10): 750-760.  doi: 10.1007/s13238-014-0083-7
    [11] Ming Li,  Wensu Liu,  Tingting Yuan,  Ruijun Bai,  Guang-Hui Liu,  Weizhou Zhang,  Jing Qu. DNA methylome: Unveiling your biological age. Protein&Cell, 2013, 4(10): 723-725.  doi: 10.1007/s13238-013-3913-0
    [12] Ying Nie,  Yan-Yi Wang. Innate immune responses to DNA viruses. Protein&Cell, 2013, 4(1): 1-7.  doi: 10.1007/s13238-012-2122-6
    [13] Chi Xu,  Jing Tian,  Beixin Mo. siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein&Cell, 2013, 4(9): 656-663.  doi: 10.1007/s13238-013-3052-7
    [14] Xiaoyu Su,  Jun Huang. The Fanconi anemia pathway and DNA interstrand cross-link repair. Protein&Cell, 2011, 2(9): 704-711.  doi: 10.1007/s13238-011-1098-y
    [15] Wenzheng Zhang,  Sheng Fu,  Xuefeng Liu,  Xuelian Zhao,  Wenchi Zhang,  Wei Peng,  Congying Wu,  Yuanyuan Li,  Xuemei Li,  Mark Bartlam,  Zong-Hao Zeng,  Qimin Zhan,  Zihe Rao. Crystal structure of human Gadd45 reveals an active dimer. Protein&Cell, 2011, 2(10): 814-826.  doi: 10.1007/s13238-011-1090-6
    [16] Chunbo Zhang,  Yuheng Liu,  Zhishang Hu,  Lili An,  Yikun He,  Haiying Hang. Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses. Protein&Cell, 2011, 2(5): 410-422.  doi: 10.1007/s13238-011-1049-7
    [17] Jiaxue Wu,  Lin-Yu Lu,  Xiaochun Yu. The role of BRCA1 in DNA damage response. Protein&Cell, 2010, 1(2): 117-123.  doi: 10.1007/s13238-010-0010-5
    [18] Chonghua Li,  Jianping Jin. DNA replication licensing control and rereplication prevention. Protein&Cell, 2010, 1(3): 227-236.  doi: 10.1007/s13238-010-0032-z
    [19] Shi Chen,  Lianrong Wang,  Zixin Deng. Twenty years hunting for sulfur in DNA. Protein&Cell, 2010, 1(1): 14-21.  doi: 10.1007/s13238-010-0009-y
    [20] Chia-Cheng Wu,  Xiaohua Wu,  Jiahuai Han,  Peiqing Sun. p38γ regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage. Protein&Cell, 2010, 1(6): 573-583.  doi: 10.1007/s13238-010-0075-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (782) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return