Citation: | Shuxiang Xu, Jinchul Kim, Qingshuang Tang, Qu Chen, Jingfeng Liu, Yang Xu, Xuemei Fu. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway[J]. Protein&Cell, 2020, 11(5): 352-365. doi: 10.1007/s13238-020-00699-6 |
[1] |
Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933-941
|
[2] |
Chen J, Li WJ, Cui K, Ji KY, Xu SX, Xu Y (2018) Artemisitene suppresses tumorigenesis by inducing DNA damage through deregulating c-Myc-topoisomerase pathway. Oncogene 37:5079-5087
|
[3] |
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823
|
[4] |
Davis AJ, Chen BPC, Chen DJ (2014) DNA-PK:a dynamic enzyme in a versatile DSB repair pathway. DNA Repair 17:21-29
|
[5] |
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S et al (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384-389
|
[6] |
Gilbert Luke A, Larson Matthew H, Morsut L, Liu Z, Brar Gloria A, Torres Sandra E, Stern-Ginossar N, Brandman O, Whitehead Evan H, Doudna Jennifer A et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442-451
|
[7] |
Gomez-Cabello D, Jimeno S, Fernández-Ávila MJ, Huertas P (2013) New tools to study DNA double-strand break repair pathway choice. PLoS ONE 8:e77206
|
[8] |
Guo XG, Chavez A, Tung A, Chan Y, Kaas C, Yin Y, Cecchi R, Garnier SL, Kelsic ED, Schubert M et al (2018) High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast. Nat Biotechnol 36:540-546
|
[9] |
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24:927-930
|
[10] |
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839-842
|
[11] |
Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57-63
|
[12] |
Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye CY et al (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24:939-946
|
[13] |
Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071-1078
|
[14] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821
|
[15] |
Kang J, Bronson RT, Xu Y (2002) Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21:1447-1455
|
[16] |
Kim J, Yu LL, Chen WC, Xu YX, Wu M, Todorova D, Tang QS, Feng BB, Jiang L, He JJ et al (2019) Wild-type p53 promotes cancer metabolic switch by inducing PUMA-dependent suppression of oxidative phosphorylation. Cancer Cell 35:191-203
|
[17] |
Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20-36
|
[18] |
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765-771
|
[19] |
Lei L, Chen H, Xue W, Yang B, Hu B, Wei J, Wang L, Cui Y, Li W, Wang J et al (2018) APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks. Nat Struct Mol Biol 25:45-52
|
[20] |
Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165-171 Epub 2004 Dec 2026
|
[21] |
Maeder ML, Linder SJ, Cascio VM, Fu YF, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977-979
|
[22] |
Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957-963
|
[23] |
Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks:the increasing spectrum of non-homologous end joining pathways. Mut Res 711:61-72
|
[24] |
Murovec J, Pirc Z, Yang B (2017) New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J 15:917-926
|
[25] |
Song H, Chung SK, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6:80-89
|
[26] |
Tan EP, Li YL, Velasco-Herrera MD, Yusa K, Bradley A (2015) Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Genesis 53:225-236
|
[27] |
Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BPC, Chen DJ (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177:219-229
|
[28] |
Urnov FD (2018) Ctrl-Alt-inDel:genome editing to reprogram a cell in the clinic. Curr Opin Genet Dev 52:48-56
|
[29] |
WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC (2018) Precision gene editing technology and applications in nephrology. Nat Rev Nephrol 14:663-677
|
[30] |
Xiong J, Todorova D, Su NY, Kim J, Lee PJ, Shen Z, Briggs SP, Xu Y (2015) Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. J Cell Biol 208:513-520
|
[31] |
Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, Volz Sara E, Joung J, van der Oost J, Regev A et al (2015) Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759-771
|
[32] |
Zhu J, Ming C, Fu X, Duan YO, Hoang DA, Rutgard J, Zhang RZ, Wang WQ, Hou R, Zhang D et al (2019) Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors (vol 27, pg 830, 2017). Cell Res 29:337-337
|
[1] | Yu Chen, Zhen Cui, Zhixi Chen, Ying Jiang, Zhiyong Mao. IDDoR: a novel reporter mouse system for simultaneous and quantitative in vivo analysis of both DNA double-strand break repair pathways. Protein&Cell, 2023, 14(5): 369-375. doi: 10.1093/procel/pwac001 |
[2] | Yunxiang Yang, Pan Yang, Nan Wang, Zhonghao Chen, Dan Su, Z. Hong Zhou, Zihe Rao, Xiangxi Wang. Architecture of the herpesvirus genomepackaging complex and implications for DNA translocation. Protein&Cell, 2020, 11(5): 339-351. doi: 10.1007/s13238-020-00710-0 |
[3] | Lin-Yong Zhao, Jinghui Song, Yibin Liu, Chun-Xiao Song, Chengqi Yi. Mapping the epigenetic modifications of DNA and RNA. Protein&Cell, 2020, 11(11): 792-808. doi: 10.1007/s13238-020-00733-7 |
[4] | Pengyan Xia, Shuo Wang, Pu Gao, Guangxia Gao, Zusen Fan. DNA sensor cGAS-mediated immune recognition. Protein&Cell, 2016, 7(11): 777-791. doi: 10.1007/s13238-016-0320-3 |
[5] | Chunju Fang, Xiawei Wei, Yuquan Wei. Mitochondrial DNA in the regulation of innate immune responses. Protein&Cell, 2016, 7(1): 11-16. doi: 10.1007/s13238-015-0222-9 |
[6] | Yu Xue, Yongbo Wang, Hui Shen. Ray Wu, fifth business or father of DNA sequencing?. Protein&Cell, 2016, 7(7): 467-470. doi: 10.1007/s13238-016-0271-8 |
[7] | Liping Deng, Ruotong Ren, Jun Wu, Keiichiro Suzuki, Juan Carlos Izpisua Belmote, Guang-Hui Liu. CRISPR/Cas9 and TALE: beyond cut and paste. Protein&Cell, 2015, 6(3): 157-159. doi: 10.1007/s13238-015-0137-5 |
[8] | Caiguo Zhang, Fan Zhang. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein&Cell, 2015, 6(2): 88-100. doi: 10.1007/s13238-014-0119-z |
[9] | Zhili Rong, Shengyun Zhu, Yang Xu, Xuemei Fu. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein&Cell, 2014, 5(4): 258-260. doi: 10.1007/s13238-014-0032-5 |
[10] | Caiguo Zhang. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein&Cell, 2014, 5(10): 750-760. doi: 10.1007/s13238-014-0083-7 |
[11] | Ming Li, Wensu Liu, Tingting Yuan, Ruijun Bai, Guang-Hui Liu, Weizhou Zhang, Jing Qu. DNA methylome: Unveiling your biological age. Protein&Cell, 2013, 4(10): 723-725. doi: 10.1007/s13238-013-3913-0 |
[12] | Ying Nie, Yan-Yi Wang. Innate immune responses to DNA viruses. Protein&Cell, 2013, 4(1): 1-7. doi: 10.1007/s13238-012-2122-6 |
[13] | Chi Xu, Jing Tian, Beixin Mo. siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein&Cell, 2013, 4(9): 656-663. doi: 10.1007/s13238-013-3052-7 |
[14] | Xiaoyu Su, Jun Huang. The Fanconi anemia pathway and DNA interstrand cross-link repair. Protein&Cell, 2011, 2(9): 704-711. doi: 10.1007/s13238-011-1098-y |
[15] | Wenzheng Zhang, Sheng Fu, Xuefeng Liu, Xuelian Zhao, Wenchi Zhang, Wei Peng, Congying Wu, Yuanyuan Li, Xuemei Li, Mark Bartlam, Zong-Hao Zeng, Qimin Zhan, Zihe Rao. Crystal structure of human Gadd45 reveals an active dimer. Protein&Cell, 2011, 2(10): 814-826. doi: 10.1007/s13238-011-1090-6 |
[16] | Chunbo Zhang, Yuheng Liu, Zhishang Hu, Lili An, Yikun He, Haiying Hang. Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses. Protein&Cell, 2011, 2(5): 410-422. doi: 10.1007/s13238-011-1049-7 |
[17] | Jiaxue Wu, Lin-Yu Lu, Xiaochun Yu. The role of BRCA1 in DNA damage response. Protein&Cell, 2010, 1(2): 117-123. doi: 10.1007/s13238-010-0010-5 |
[18] | Chonghua Li, Jianping Jin. DNA replication licensing control and rereplication prevention. Protein&Cell, 2010, 1(3): 227-236. doi: 10.1007/s13238-010-0032-z |
[19] | Shi Chen, Lianrong Wang, Zixin Deng. Twenty years hunting for sulfur in DNA. Protein&Cell, 2010, 1(1): 14-21. doi: 10.1007/s13238-010-0009-y |
[20] | Chia-Cheng Wu, Xiaohua Wu, Jiahuai Han, Peiqing Sun. p38γ regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage. Protein&Cell, 2010, 1(6): 573-583. doi: 10.1007/s13238-010-0075-1 |