Volume 11 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
Fang Wang, Weiqi Zhang, Qiaoyan Yang, Yu Kang, Yanling Fan, Jingkuan Wei, Zunpeng Liu, Shaoxing Dai, Hao Li, Zifan Li, Lizhu Xu, Chu Chu, Jing Qu, Chenyang Si, Weizhi Ji, Guang-Hui Liu, Chengzu Long, Yuyu Niu. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing[J]. Protein&Cell, 2020, 11(11): 809-824. doi: 10.1007/s13238-020-00740-8
Citation: Fang Wang, Weiqi Zhang, Qiaoyan Yang, Yu Kang, Yanling Fan, Jingkuan Wei, Zunpeng Liu, Shaoxing Dai, Hao Li, Zifan Li, Lizhu Xu, Chu Chu, Jing Qu, Chenyang Si, Weizhi Ji, Guang-Hui Liu, Chengzu Long, Yuyu Niu. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing[J]. Protein&Cell, 2020, 11(11): 809-824. doi: 10.1007/s13238-020-00740-8

Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing

doi: 10.1007/s13238-020-00740-8
Funds:

This work was supported by the National Key Research and Development Program (2016YFA0101401), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16010100), the National Key Research and Development Program (2018YFA0801403, 2018YFC2000100), the National Natural Science Foundation of China (Grant Nos. 81921006, 81625009, 91749202, 91949209, 81822018, 91749123, 81671377) and Youth Innovation Promotion Association of CAS (2016093).

  • Received Date: 2020-04-09
  • Rev Recd Date: 2020-05-11
  • Many human genetic diseases, including HutchinsonGilford progeria syndrome (HGPS), are caused by single point mutations. HGPS is a rare disorder that causes premature aging and is usually caused by a de novo point mutation in the LMNA gene. Base editors (BEs) composed of a cytidine deaminase fused to CRISPR/Cas9 nickase are highly efficient at inducing C to T base conversions in a programmable manner and can be used to generate animal disease models with single amino-acid substitutions. Here, we generated the first HGPS monkey model by delivering a BE mRNA and guide RNA (gRNA) targeting the LMNA gene via microinjection into monkey zygotes. Five out of six newborn monkeys carried the mutation specifically at the target site. HGPS monkeys expressed the toxic form of lamin A, progerin, and recapitulated the typical HGPS phenotypes including growth retardation, bone alterations, and vascular abnormalities. Thus, this monkey model genetically and clinically mimics HGPS in humans, demonstrating that the BE system can efficiently and accurately generate patient-specific disease models in non-human primates.
  • loading
  • [1]
    Aktas S, Kiyak M, Ozdil K, Kurtca I, Kibar S, Ahbab S, Karadeniz Y, Saler T (2013) Gastrointestinal tract hemorrhage due to angiodysplasia in hutchinson gilfort Progeria syndrome. J Med Cases 4(8):576-578
    [2]
    Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169
    [3]
    Bae S, Park J, Kim JS (2014) Cas-OFFinder:a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNAguided endonucleases. Bioinformatics 30:1473-1475
    [4]
    Capell BC, Collins FS (2006) Human laminopathies:nuclei gone genetically awry. Nat Rev Genet 7:940-952
    [5]
    Chan AWS (2013) Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 54:211-223
    [6]
    Chen S, Zhou Y, Chen Y, Gu J (2018) fastp:an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884-i890
    [7]
    Chu Y, Xu Z-G, Xu Z, Ma L (2015) Hutchinson-Gilford progeria syndrome caused by an LMNA mutation:a case report. Pediatr Dermatol 32:271-275
    [8]
    Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798-1806
    [9]
    Ding Z, Sui L, Ren R, Liu Y, Xu X, Fu L, Bai R, Yuan T, Hao Y, Zhang W et al (2015) A widely adaptable approach to generate integration-free iPSCs from non-invasively acquired human somatic cells. Protein Cell 6:386-389
    [10]
    Dorado B, Ploen GG, Barettino A, Macias A, Gonzalo P, AndresManzano MJ, Gonzalez-Gomez C, Galan-Arriola C, Alfonso JM, Lobo M et al (2019) Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discov 5:16
    [11]
    Doubaj Y, Lamzouri A, Elalaoui SC, Laarabi FZ, Sefiani A (2011) Syndrome d'Hutchinson-Gilford (progéria). À propos de 3 cas. Archives de Pédiatrie 18:156-159
    [12]
    Erdem N, Güneş AT, Avcı O, Osma E (1994) A case of Hutchinson-Gilford progeria syndrome mimicking scleredema in early infancy. Dermatology 188:318-321
    [13]
    Fleischer JG, Schulte R, Tsai HH, Tyagi S, Ibarra A, Shokhirev MN, Huang L, Hetzer MW, Navlakha S (2018) Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol 19:221
    [14]
    Giangreco A, Qin M, Pintar JE, Watt FM (2008) Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7:250-259
    [15]
    Gordon CM, Gordon LB, Snyder BD, Nazarian A, Quinn N, Huh S, Giobbie-Hurder A, Neuberg D, Cleveland R, Kleinman M et al(2011) Hutchinson-gilford progeria is a skeletal dysplasia. J Bone Miner Res 26:1670-1679
    [16]
    Gordon LB, Harten IA, Patti ME, Lichtenstein AH (2005) Reduced adiponectin and HDL cholesterol without elevated C-reactive protein:clues to the biology of premature atherosclerosis in Hutchinson-Gilford progeria syndrome. J Pediatr 146:336-341
    [17]
    Gordon Leslie B, Kleinman Monica E, Massaro J, D'Agostino Ralph B, Shappell H, Gerhard-Herman M, Smoot Leslie B, Gordon Catherine M, Cleveland Robert H, Nazarian A et al (2016) Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation 134:114-125
    [18]
    Hennekam RCM (2006) Hutchinson-Gilford progeria syndrome:review of the phenotype. Am J Med Genet A 140A:2603-2624
    [19]
    Jung H-J, Coffinier C, Choe Y, Beigneux AP, Davies BSJ, Yang SH, Barnes RH, Hong J, Sun T, Pleasure SJ et al (2012) Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci USA 109:E423-E431
    [20]
    Kang Y, Chu C, Wang F, Niu Y (2019) CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis Models Mech 12:39982
    [21]
    Khalifa MM (1989) Hutchinson-Gilford progeria syndrome:report of a Libyan family and evidence of autosomal recessive inheritance. Clin Genet 35:125-132
    [22]
    Kim D, Langmead B, Salzberg SL (2015) HISAT:a fast spliced aligner with low memory requirements. Nat Methods 12:357-360
    [23]
    Kim K, Ryu S-M, Kim S-T, Baek G, Kim D, Lim K, Chung E, Kim S, Kim J-S (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435
    [24]
    Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, Chen X, Kim Y, Beyter D, Krusche P et al (2018) Strelka2:fast and accurate calling of germline and somatic variants. Nat Methods 15:591-594
    [25]
    Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A, Liu DR (2018a) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36:843-846
    [26]
    Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A, Liu DR (2018b) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36:843-846
    [27]
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420
    [28]
    Korf B (2008) Hutchinson-Gilford progeria syndrome, aging, and the nuclear lamina. N Engl J Med 358:552-555
    [29]
    Kubben N, Zhang W, Wang L, Voss TC, Yang J, Qu J, Liu GH, Misteli T (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361-1374
    [30]
    Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J et al (2016) ClinVar:public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:D862-D868
    [31]
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760
    [32]
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing, S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079
    [33]
    Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y et al (2017) Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8:811-822
    [34]
    Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C et al (2011a) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221-225
    [35]
    Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD et al (2011b) Targeted gene correction of laminopathy-associated LMNA mutations in patientspecific iPSCs. Cell Stem Cell 8:688-694
    [36]
    Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z (2018a) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9:2717
    [37]
    Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z (2018b) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9:2717
    [38]
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
    [39]
    Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith ACM, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B et al (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592-604
    [40]
    Monu JUV, Benka-Coker LBO, Fatunde Y (1990) Hutchinson-Gilford progeria syndrome in siblings. Skeletal Radiol 19:585-590
    [41]
    National Genomics Data Center, M., and Partners (2020) Database Resources of the National Genomics Data Center in 2020. Nucleic Acids Res 48:D24-D33
    [42]
    Niu Y, Yu Y, Bernat A, Yang S, He X, Guo X, Chen D, Chen Y, Ji S, Si W et al (2010) Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc Natl Acad Sci USA 107:17663-17667
    [43]
    Osorio FG, Navarro CL, Cadinanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, Guzman G, Varela I et al (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3:106ra107
    [44]
    Ozonoff MB, Clemett AR (1967) Progressive osteolysis in progeria. Am J Roentgenol 100:75-79
    [45]
    Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20:490-507
    [46]
    Prakash A, Gordon LB, Kleinman ME, Gurary EB, Massaro J, D'Agostino R Sr, Kieran MW, Gerhard-Herman M, Smoot L (2018) Cardiac abnormalities in patients with Hutchinson-Gilford progeria syndrome. JAMA Cardiol 3:326-334
    [47]
    Rastogi R, Chander Mohan S (2008) Progeria syndrome:a case report. Indian J Orthopaedics 42:97-99
    [48]
    Rivera-Torres J, Calvo CJ, Llach A, Guzmán-Martínez G, Caballero R, González-Gómez C, Jiménez-Borreguero LJ, Guadix JA, Osorio FG, López-Otín C et al (2016) Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations. Proc Natl Acad Sci USA 113:E7250-E7259
    [49]
    Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG (2014) Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome. Pediatr Dermatol 31:196-202
    [50]
    Selvin E, Najjar SS, Cornish TC, Halushka MK (2010) A comprehensive histopathological evaluation of vascular medial fibrosis:insights into the pathophysiology of arterial stiffening. Atherosclerosis 208:69-74
    [51]
    Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ (2013) Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome. Am J Neuroradiol 34:1091-1097
    [52]
    Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8:29-39
    [53]
    Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba:fast processing of NGS alignment formats. Bioinformatics 31:2032-2034
    [54]
    Ullrich NJ, Gordon LB (2015) Chapter 18-Hutchinson-Gilford progeria syndrome. In:Islam MP, Roach ES (eds) Handbook of clinical neurology. Elsevier, Amsterdam, pp 249-264
    [55]
    Ullrich NJ, Silvera VM, Campbell SE, Gordon LB (2012) Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome. Am J Neuroradiol 33:1512-1518
    [56]
    Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q et al (2017) GSA:genome sequence archive. Genomics Proteomics Bioinform 15:14-18
    [57]
    Wei Q, Zhan X, Zhong X, Liu Y, Han Y, Chen W, Li B (2015) A Bayesian framework for de novo mutation calling in parentsoffspring trios. Bioinformatics 31:1375-1381
    [58]
    Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan P et al (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333-350
    [59]
    Xu S, Jin Z-G (2019) Hutchinson-Gilford progeria syndrome:cardiovascular pathologies and potential therapies. Trends Biochem Sci 44:561-564
    [60]
    Zhang M, Zhou C, Wei Y, Xu C, Pan H, Ying W, Sun Y, Sun Y, Xiao Q, Yao N et al (2019a) Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biol 20:101
    [61]
    Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z et al (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661-665
    [62]
    Zhang X, Liu Z, Liu X, Wang S, Zhang Y, He X, Sun S, Ma S, ShyhChang N, Liu F et al (2019b) Telomere-dependent and telomereindependent roles of RAP1 in regulating human stem cell homeostasis. Protein Cell 10:649-667
    [63]
    Zhou C, Zhang M, Wei Y, Sun Y, Sun Y, Pan H, Yao N, Zhong W, Li Y, Li W et al (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8:772-775
    [64]
    Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 10:1523
    [65]
    Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. 364(6437):289-292
  • PAC-0809-20917-NYY_supple_1.pdf
    PAC-0809-20917-NYY_supple_Table S6.xlsx
    PAC-0809-20917-NYY_supple Table S5.xlsx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (133) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return