Volume 12 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Liang Xu, Peixue Li, Xue Hao, Yi Lu, Mingxian Liu, Wenqian Song, Lin Shan, Jiao Yu, Hongyu Ding, Shishuang Chen, Ailing Yang, Yi Arial Zeng, Lei Zhang, Hai Jiang. SHANK2 is a frequently amplified oncogene with evolutionarily conserved roles in regulating Hippo signaling[J]. Protein&Cell, 2021, 12(3): 174-193. doi: 10.1007/s13238-020-00742-6
Citation: Liang Xu, Peixue Li, Xue Hao, Yi Lu, Mingxian Liu, Wenqian Song, Lin Shan, Jiao Yu, Hongyu Ding, Shishuang Chen, Ailing Yang, Yi Arial Zeng, Lei Zhang, Hai Jiang. SHANK2 is a frequently amplified oncogene with evolutionarily conserved roles in regulating Hippo signaling[J]. Protein&Cell, 2021, 12(3): 174-193. doi: 10.1007/s13238-020-00742-6

SHANK2 is a frequently amplified oncogene with evolutionarily conserved roles in regulating Hippo signaling

doi: 10.1007/s13238-020-00742-6

This work was supported by the major scientific research project (Grant Nos. 2017YFA0504503, 2019YFA0802001 and 2017YFA0103601), the National Natural Science Foundation of China (Grant Nos. 81972600, 31530043 and 31625017), the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDB19000000, and Shanghai Leading Talents Program to L.Z. We thank Dr. Faxing Yu for helpful discussions on the project, and Dr. Xin Chen and Dr. Jianming Chen for kindly providing reagents and fly strains. We thank the technical help from Animal Core Facility and Core Facility for Cell Biology at SIBCB.

  • Received Date: 2019-12-30
  • Rev Recd Date: 2020-05-11
  • Publish Date: 2021-03-12
  • Dysfunction of the Hippo pathway enables cells to evade contact inhibition and provides advantages for cancerous overgrowth. However, for a significant portion of human cancer, how Hippo signaling is perturbed remains unknown. To answer this question, we performed a genome-wide screening for genes that affect the Hippo pathway in Drosophila and cross-referenced the hit genes with human cancer genome. In our screen, Prosap was identified as a novel regulator of the Hippo pathway that potently affects tissue growth. Interestingly, a mammalian homolog of Prosap, SHANK2, is the most frequently amplified gene on 11q13, a major tumor amplicon in human cancer. Gene amplification profile in this 11q13 amplicon clearly indicates selective pressure for SHANK2 amplification. More importantly, across the human cancer genome, SHANK2 is the most frequently amplified gene that is not located within the Myc amplicon. Further studies in multiple human cell lines confirmed that SHANK2 overexpression causes deregulation of Hippo signaling through competitive binding for a LATS1 activator, and as a potential oncogene, SHANK2 promotes cellular transformation and tumor formation in vivo. In cancer cell lines with deregulated Hippo pathway, depletion of SHANK2 restores Hippo signaling and ceases cellular proliferation. Taken together, these results suggest that SHANK2 is an evolutionarily conserved Hippo pathway regulator, commonly amplified in human cancer and potently promotes cancer. Our study for the first time illustrated oncogenic function of SHANK2, one of the most frequently amplified gene in human cancer. Furthermore, given that in normal adult tissues, SHANK2's expression is largely restricted to the nervous system, SHANK2 may represent an interesting target for anticancer therapy.
  • loading
  • [1]
    Atkins M, Potier D, Romanelli L, Jacobs J, Mach J, Hamaratoglu F, Aerts S, Halder G (2016) An ectopic network of transcription factors regulated by hippo signaling drives growth and invasion of a malignant tumor model. Curr Biol 26(16):2101-2113
    Barros-Filho MC, Reis-Rosa LA, Hatakeyama M, Marchi FA, Chulam T, Scapulatempo-Neto C, Nicolau UR, Carvalho AL, Pinto CAL, Drigo SA et al (2018) Oncogenic drivers in 11q13 associated with prognosis and response to therapy in advanced oropharyngeal carcinomas. Oral Oncol 83:81-90
    Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D et al (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42(6):489-491
    Brown J, Stepien AJ, Willem P (2020) Landscape of copy number aberrations in esophageal squamous cell carcinoma from a high endemic region of South Africa. BMC Cancer 20(1):281
    Carneiro A, Isinger A, Karlsson A, Johansson J, Jönsson G, Bendahl PO, Falkenback D, Halvarsson B, Nilbert M (2008) Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer 8:98
    Chakraborty S, Njah K, Pobbati AV, Lim YB, Raju A, Lakshmanan M, Tergaonkar V, Lim CT, Hong W (2017) Agrin as a mechanotransduction signal regulating YAP through the Hippo pathway. Cell Rep 18(10):2464-2479
    Chang L, Azzolin L, Di Biagio D, Zanconato F, Battilana G, Lucon Xiccato R, Aragona M, Giulitti S, Panciera T, Gandin A et al (2018) The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563(7730):265-269
    Dent LG, Poon CLC, Zhang X, Degoutin JL, Tipping M, Veraksa A, Harvey KF (2015) The GTPase regulatory proteins pix and git control tissue growth via the hippo pathway. Curr Biol 25(1):124-130
    Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in drosophila and mammals. Cell 130(6):1120-1133
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474 (7350):179-183
    Engels WR (1996) P elements in Drosophila. Curr Top Microbiol Immunol 204:103-123
    Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a Trio-regulated Rho GTPase signaling circuitry. Cancer Cell 25(6):831-845
    Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM (2009) YAP1 is amplified and upregulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23(23):2729-2741
    Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, Zengerle M, Ciulli A (2017) Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat ChemBiol 13(5):514-521
    Gumbiner BM, Kim NG (2014) The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 127(Pt 4):709-717
    Guo T, Lu Y, Li P, Yin MX, Lv D, Zhang W, Wang H, Zhou Z, Ji H, Zhao Y et al (2013) A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 23 (10):1201-1214
    Halder G, Johnson RL (2011) Hippo signaling:growth control and beyond. Development 138(1):9-22
    Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13 (9):591-600
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer:the next generation. Cell 144(5):646-674
    Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114(4):457-467
    Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu RM, Li H, Sala C, Hayashi Y (2009) The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137 (1):159-171
    Heidary Arash E, Song KM, Song S, Shiban A, Attisano L (2014) Arhgef7 promotes activation of the Hippo pathway core kinase Lats. EMBO J 33(24):2997-3011
    Hu L, Xu J, Yin MX, Lu Y, Wu W, Xue Z, Ho MS, Gao G, Zhao Y, Zhang L et al (2016) Ack promotes tissue growth via phosphorylation and suppression of the Hippo pathway component Expanded. Cell Discov 2:15047
    Huang HL, Wang S, Yin MX, Dong L, Wang C, Wu W, Lu Y, Feng M, Dai C, Guo X et al (2013) Par-1 regulates tissue growth by influencing hippo phosphorylation status and Hippo-Salvador association. PLoS Biol 11(8):e1001620
    Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122(3):421-434
    Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL, Sung CC, Miyakawa T, Bear MF et al (2008) Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 28(7):1697-1708
    Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17(20):2514-2519
    Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W et al (2014) A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25(2):166-180
    Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24(5):251-254
    Li J, Belogortseva N, Porter D, Park M (2008) Chmp1A functions as a novel tumor suppressor gene in human embryonic kidney and ductal pancreatic tumor cells. Cell Cycle 7(18):2886-2893
    Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz Paula AF et al (2018) Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the Hippo pathway. Cancer Cell 34(6):893-905
    Lim SK, Lu SY, Kang SA, Tan HJ, Li Z, Wee ZNA, Guan JS, Chichili VPR, Sivaraman J, Putti T et al (2016) Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TAZ transcriptional coactivator WBP2. Cancer Res 76(21):6278-6289
    Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W et al (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J Biol Chem 285 (48):37159-37169
    Maille E, Brosseau S, Hanoux V, Creveuil C, Danel C, Bergot E, Scherpereel A, Mazières J, Margery J, Greillier L et al (2019) MST1/Hippo promoter gene methylation predicts poor survival in patients with malignant pleural mesothelioma in the IFCT-GFPC-0701 MAPS Phase 3 trial. Br J Cancer 120(4):387-397
    Malik SA, Khan MS, Dar M, Hussain MU, Shah MA, Shafi SM, Mudassar S (2018) Molecular alterations and expression dynamics of LATS1 and LATS2 genes in non-small-cell lung carcinoma. Pathol Oncol Res 24(2):207-214
    Merritt NM, Fullenkamp CA, Hall SL, Qian Q, Desai C, Thomason J, Lambertz AM, Dupuy AJ, Darbro B, Tanas MR (2018) A comprehensive evaluation of Hippo pathway silencing in sarcomas. Oncotarget 9(60):31620-31636
    Naisbitt S, Eunjoon K, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23(3):569-582
    Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng C-X, Brugge JS, Haber DA (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103(33):12405-12410
    Pantalacci S, Tapon N, Léopold P (2003) The salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5(10):921-927
    Park E, Na M, Choi J, Kim S, Lee JR, Yoon J, Park D, Sheng M, Kim E (2003) The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the βPIX guanine nucleotide exchange factor for Rac1 and Cdc42. J Biol Chem 278(21):19220-19229
    Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472 (7344):437-442
    Pontén FK, Schwenk JM, Asplund A, Edqvist PHD (2011) The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med 270(5):428-446
    Qin H De, Liao XY, Chen Y Bin, Huang SY, Xue WQ, Li FF, Ge XS, Liu DQ, Cai Q, Long J et al (2016) Genomic characterization of esophageal squamous cell carcinoma reveals critical genes underlying tumorigenesis and poor prognosis. Am J Hum Genet 98(4):709-727
    Rørth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93 (22):12418-12422
    Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S et al (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell 173(2):321-337
    Sansores-Garcia L, Atkins M, Moya IM, Shahmoradgoli M, Tao C, Mills GB, Halder G (2013) Mask is required for the activity of the hippo pathway effector Yki/YAP. Curr Biol 23(3):229-235
    Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen AL, Udvardi PT, Shiban E, Spilker C et al (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486(7402):256-260
    Schneider K, Seemann E, Liebmann L, Ahuja R, Koch D, Westermann M, Hübner CA, Kessels MM, Qualmann B (2014) ProSAP1 and membrane nanodomain-associated syndapin i promote postsynapse formation and function. J Cell Biol 205(2):197-215
    Seidel C, Schagdarsurengin U, Blümke K, Würl P, Pfeifer GP, Hauptmann S, Taubert H, Dammann R (2007) Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol Carcinog 46(10):865-871
    Setten RL, Rossi JJ, Han S (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18 (6):421-446
    Siew WC, Chun JL, Guo K, Chee PN, Lee I, Hunziker W, Zeng Q, Hong W (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68(8):2592-2598
    Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O, Chang J, Simpson RM et al (2010) Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 107(4):1431-1436
    Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y et al (2014) Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509(7498):91-95
    Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25(5):1069-1075
    Stepanenko AA, Dmitrenko VV (2015) HEK293 in cell biology and cancer research:Phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 569(2):182-190
    Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA:A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98-W102
    Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5(10):914-920
    Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17(4):490-499
    Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ, Berrios J, Colvin JS, Bousquet-Moore D et al (2011) Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 20(15):3093-3108
    Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E, Instrell R, Jiang M, Howell M, Rossner MJ et al (2013) Saltinducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 15(1):61-71
    Wierzbicki PM, Adrych K, Kartanowicz D, Stanislawowski M, Kowalczyk A, Godlewski J, Skwierz-Bogdanska I, Celinski K, Gach T, Kulig J et al (2013) Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation. World J Gastroenterol 19(27):4363-4373
    Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, Ha S, Chung C, Jung ES, Cho YS et al (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486(7402):261-265
    Wu C, Jin X, Tsueng G, Afrasiabi C, Su AI (2016) BioGPS:Building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 44(D1):D313-D316
    Wu S, Huang J, Dong J, Pan D (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114 (4):445-456
    Xiao GH, Chernoff J, Testa JR (2003) NF2:The Wizardry of Merlin. Genes Chromosom Cancer 38(4):389-399
    Yang C-C, Graves HK, Moya IM, Tao C, Hamaratoglu F, Gladden AB, Halder G (2015) Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci USA 112(6):1785-1790
    Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA (2004) Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase:critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 24(20):9239-9247
    Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D (2013) XSpatial organization of hippo signaling at the plasma membrane mediated by the tumor suppressor merlin/NF2. Cell 154(6):1342-1355
    Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H et al (2012) Regulation of the HippoYAP pathway by G-protein-coupled receptor signaling. Cell 150 (4):780-791
    Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, Zhao L, Peyman G, Ouyang H, Jiang W et al (2014) Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25 (6):822-830
    Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811-828
    Yu T, Bachman J, Lai ZC (2013) Evidence for a tumor suppressor role for the Large tumor suppressor genes LATS1 and LATS2 in human cancer. Genetics 195(3):1193-1196
    Yu Y, Cao J, Wu W, Zhu Q, Tang Y, Zhu C, Dai J, Li Z, Wang J, Xue L et al (2019) Genome-wide copy number variation analysis identified ANO1 as a novel oncogene and prognostic biomarker in esophageal squamous cell cancer. Carcinogenesis 40 (10):1198-1208
    Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang CZ, Wala J, Mermel CH et al (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45(10):1134-1140
    Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ et al (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125(7):1253-1267
    Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14(3):377-387
    Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, Giovannini M, Liu P, Anders RA, Pan D (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19(1):27-38
    Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z et al (2014) VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 24(3):331-343
    Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev 24(1):72-85
    Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26(1):54-68
    Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J et al (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16(5):425-438
  • PAC-0174-19582-JH_supple.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (458) PDF downloads(118) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint