Volume 12 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Dandan Liang, Zhigang Xue, Jinfeng Xue, Duanyang Xie, Ke Xiong, Huixing Zhou, Fulei Zhang, Xuling Su, Guanghua Wang, Qicheng Zou, Yi Liu, Jian Yang, Honghui Ma, Luying Peng, Chunyu Zeng, Gang Li, Li Wang, Yi-Han Chen. Sinoatrial node pacemaker cells share dominant biological properties with glutamatergic neurons[J]. Protein&Cell, 2021, 12(7): 545-556. doi: 10.1007/s13238-020-00820-9
Citation: Dandan Liang, Zhigang Xue, Jinfeng Xue, Duanyang Xie, Ke Xiong, Huixing Zhou, Fulei Zhang, Xuling Su, Guanghua Wang, Qicheng Zou, Yi Liu, Jian Yang, Honghui Ma, Luying Peng, Chunyu Zeng, Gang Li, Li Wang, Yi-Han Chen. Sinoatrial node pacemaker cells share dominant biological properties with glutamatergic neurons[J]. Protein&Cell, 2021, 12(7): 545-556. doi: 10.1007/s13238-020-00820-9

Sinoatrial node pacemaker cells share dominant biological properties with glutamatergic neurons

doi: 10.1007/s13238-020-00820-9

81770267 and 82070271, to D.L.

This work was funded by the Grants from the National Key Research and Development Plan (2019YFA0801501, to Y.-H.C.

2017YFC1001300, 2016YFC1000208, to Z.X.), Programs of National Natural Science Foundation of China (82088101, 81930013, 81530017 and 81770397, to Y.-H.C.

81900297 and 82070338, to D.X.), Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai (PWZxq2017-05), Top-level Clinical Discipline Project of Shanghai Pudong District (PWYgf2018-02), Program for the Research Unit of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences (2019RU045), Innovative research team of highlevel local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005). Y.- H.C. is a Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University.

81771651, to Z.X.

  • Received Date: 2020-11-05
  • Rev Recd Date: 2020-12-03
  • Publish Date: 2021-07-08
  • Activation of the heart normally begins in the sinoatrial node (SAN). Electrical impulses spontaneously released by SAN pacemaker cells (SANPCs) trigger the contraction of the heart. However, the cellular nature of SANPCs remains controversial. Here, we report that SANPCs exhibit glutamatergic neuron-like properties. By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse, we found that SANPCs co-clustered with cortical neurons. Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system, expressing genes encoding glutamate synthesis pathway (Gls), ionotropic and metabotropic glutamate receptors (Grina, Gria3, Grm1 and Grm5), and glutamate transporters (Slc17a7). SANPCs highly expressed cell markers of glutamatergic neurons (Snap25 and Slc17a7), whereas Gad1, a marker of GABAergic neurons, was negative. Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+ transients frequency in single SANPC. Collectively, our work suggests that SANPCs share dominant biological properties with glutamatergic neurons, and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm, which provides a potential intervention target for pacemaker cell-associated arrhythmias.
  • loading
  • [1]
    Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G, Gnecchi-Rusconi T, Montano N, Casali KR, Micheloni S, Barbuti A et al (2011) Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc Natl Acad Sci USA 108:1705-1710
    Boyden PA, Dun W, Robinson RB (2016) Cardiac Purkinje fibers and arrhythmias; The GK Moe Award Lecture 2015. Heart Rhythm 13:1172-1181
    Bredeloux P, Findlay I, Pasqualin C, Hocini M, Bernus O, Maupoil V (2020) Selective inhibition of electrical conduction within the pulmonary veins by alpha1-adrenergic receptors activation in the rat. Sci Rep 10:5390
    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411-420
    Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, Difrancesco D, Baruscotti M, Longhi R, Anderson RH et al (2009) Molecular architecture of the human sinus node:insights into the function of the cardiac pacemaker. Circulation 119:1562-1575
    Cingolani E, Goldhaber JI, Marban E (2018) Next-generation pacemakers:from small devices to biological pacemakers. Nat Rev Cardiol 15:139-150
    Clauss S, Bleyer C, Schuttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S (2019) Animal models of arrhythmia:classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 16:457-475
    Divito CB, Underhill SM (2014) Excitatory amino acid transporters:roles in glutamatergic neurotransmission. Neurochem Int 73:172-180
    Dun W, Boyden PA (2008) The Purkinje cell; 2008 style. J Mol Cell Cardiol 45:617-624
    El Mestikawy S, Wallen-Mackenzie A, Fortin GM, Descarries L, Trudeau LE (2011) From glutamate co-release to vesicular synergy:vesicular glutamate transporters. Nat Rev Neurosci 12:204-216
    Ewy GA (2014) Sick sinus syndrome:synopsis. J Am Coll Cardiol 64:539-540
    Finlay M, Harmer SC, Tinker A (2017) The control of cardiac ventricular excitability by autonomic pathways. Pharmacol Ther 174:97-111
    Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018) Batch effects in single-cell RNA sequencing data are corrected by matching mutual nearest neighbours. Nat Biotechnol 36:421-427
    Herring N, Kalla M, Paterson DJ (2019) The autonomic nervous system and cardiac arrhythmias:current concepts and emerging therapies. Nat Rev Cardiol 16:707-726
    Kalmbach BE, Buchin A, Long B, Close J, Nandi A, Miller JA, Bakken TE, Hodge RD, Chong P, de Frates R et al (2018) h-Channels contribute to divergent intrinsic membrane properties of supragranular pyramidal neurons in human versus mouse cerebral cortex. Neuron 100:1194-1208
    Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ Res 106:659-673
    Li H, Li D, Wang YZ, Huang Z, Xu J, Yang T, Wang L, Tang Q, Cai CL, Huang H et al (2019) Nkx2-5 defines a subpopulation of pacemaker cells and is essential for the physiological function of the sinoatrial node in mice. Development 146:dev178145
    Linscheid N, Logantha S, Poulsen PC, Zhang S, Schrölkamp M, Egerod KL, Thompson JJ, Kitmitto A, Galli G, Humphries MJ et al (2019) Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun 10:2889
    Lolicato M, Bucchi A, Arrigoni C, Zucca S, Nardini M, Schroeder I, Simmons K, Aquila M, DiFrancesco D, Bolognesi M et al (2014) Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nat Chem Biol 10:457-462
    Malik AR, Willnow TE (2019) Excitatory amino acid transporters in physiology and disorders of the central nervous system. Int J Mol Sci 20:5671
    Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919-982
    Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 100:5543-5548
    Morquette P, Verdier D, Kadala A, Féthière J, Philippe AG, Robitaille R, Kolta A (2015) An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci 18:844-854
    Murphy C, Lazzara R (2016) Current concepts of anatomy and electrophysiology of the sinus node. J Interv Card Electrophysiol 46:9-18
    Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3:748-755
    O'Leary T, Williams AH, Franci A, Marder E (2014) Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82:809-821
    Pulver SR, Griffith LC (2009) Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics. Nat Neurosci 13:53-59
    Ritter P, Duray GZ, Steinwender C, Soejima K, Omar R, Mont L, Boersma LV, Knops RE, Chinitz L, Zhang S et al (2015) Early performance of a miniaturized leadless cardiac pacemaker:the Micra Transcatheter Pacing Study. Eur Heart J 36:2510-2519
    Rolston JD, Laxpati NG, Gutekunst CA, Potter SM, Gross RE (2010) Spontaneous and evoked high-frequency oscillations in the tetanus toxin model of epilepsy. Epilepsia 51:2289-2296
    Schenck S, Wojcik SM, Brose N, Takamori S (2009) A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat Neurosci 12:156-162
    Shen MJ, Zipes DP (2014) Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114:1004-1021
    Stieber J, Herrmann S, Feil S, Löster J, Feil R, Biel M, Hofmann F, Ludwig A (2003) The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA 100:15235-15240
    Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, Levi B, Gray LT, Sorensen SA, Dolbeare T et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335-346
    Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J (2020) A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 21:12
    Van Eif VW, Devalla HD, Boink GJ, Christoffels VM (2018) Transcriptional regulation of the cardiac conduction system. Nat Rev Cardiol 15:617-630
    Vinogradova TM, Sirenko S, Lyashkov AE, Younes A, Li Y, Zhu W, Yang D, Ruknudin AM, Spurgeon H, Lakatta EG (2008) Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases. Circ Res 102:761-769
    Vinogradova TM, Brochet DX, Sirenko S, Li Y, Spurgeon H, Lakatta EG (2010) Sarcoplasmic reticulum Ca2+ pumping kinetics regulates timing of local Ca2+ releases and spontaneous beating rate of rabbit sinoatrial node pacemaker cells. Circ Res 107:767-775
    Zhu TG, Patel C, Martin S, Quan X, Wu Y, Burke JF, Chernick M, Kowey PR, Yan GX (2009) Ventricular transmural repolarization sequence:its relationship with ventricular relaxation and role in ventricular diastolic function. Eur Heart 30:372-380
    Zhu W, Wang C, Hu J, Wan R, Yu J, Xie J, Ma J, Guo L, Ge J, Qiu Y et al (2018) Ankyrin-B Q1283H variant linked to arrhythmias via loss of local protein phosphatase 2A activity causes ryanodine receptor hyperphosphorylation. Circulation 138:2682-2697
  • Relative Articles

    [1] Min Wei,  Yanping Sun,  Shouzhen Li,  Yunuo Chen,  Longfei Li,  Minghao Fang,  Ronghua Shi,  Dali Tong,  Jutao Chen,  Yuqian Ma,  Kun Qu,  Mei Zhang,  Tian Xue. Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling. Protein&Cell, 2023, 14(8): 603-617.  doi: 10.1093/procel/pwad007
    [2] Zekai Wu,  Yuan Shi,  Yueli Cui,  Xin Xing,  Liya Zhang,  Da Liu,  Yutian Zhang,  Ji Dong,  Li Jin,  Meijun Pang,  Rui-Ping Xiao,  Zuoyan Zhu,  Jing-Wei Xiong,  Xiangjun Tong,  Yan Zhang,  Shiqiang Wang,  Fuchou Tang,  Bo Zhang. Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration. Protein&Cell, 2023, 14(5): 350-368.  doi: 10.1093/procel/pwac010
    [3] Qian Zhao,  Yandong Zheng,  Dongxin Zhao,  Liyun Zhao,  Lingling Geng,  Shuai Ma,  Yusheng Cai,  Chengyu Liu,  Yupeng Yan,  Juan Carlos Izpisua Belmonte,  Si Wang,  Weiqi Zhang,  Guang-Hui Liu,  Jing Qu. Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration. Protein&Cell, 2023, 14(6): 398-415.  doi: 10.1093/procel/pwac062
    [4] Guoqiang Sun,  Yandong Zheng,  Xiaolong Fu,  Weiqi Zhang,  Jie Ren,  Shuai Ma,  Shuhui Sun,  Xiaojuan He,  Qiaoran Wang,  Zhejun Ji,  Fang Cheng,  Kaowen Yan,  Ziyi Liu,  Juan Carlos Izpisua Belmonte,  Jing Qu,  Si Wang,  Renjie Chai,  Guang-Hui Liu. Single-cell transcriptomic atlas of mouse cochlear aging. Protein&Cell, 2023, 14(3): 180-201.  doi: 10.1093/procel/pwac058
    [5] Yu-Sheng Chen,  Shuaiyao Lu,  Bing Zhang,  Tingfu Du,  Wen-Jie Li,  Meng Lei,  Yanan Zhou,  Yong Zhang,  Penghui Liu,  Yong-Qiao Sun,  Yong-Liang Zhao,  Ying Yang,  Xiaozhong Peng,  Yun-Gui Yang. Comprehensive analysis of RNA-seq and whole genome sequencing data reveals no evidence for SARS-CoV-2 integrating into host genome. Protein&Cell, 2022, 13(5): 379-385.  doi: 10.1007/s13238-021-00861-8
    [6] Yanmeng Li,  Jianshi Jin,  Fan Bai. Cancer biology deciphered by single-cell transcriptomic sequencing. Protein&Cell, 2022, 13(3): 167-179.  doi: 10.1007/s13238-021-00868-1
    [7] Cheng Chen,  Yuanxin Liao,  Guangdun Peng. Connecting past and present: single-cell lineage tracing. Protein&Cell, 2022, 13(11): 790-807.  doi: 10.1007/s13238-022-00913-7
    [8] Xiaolong Ma,  Jiacheng Deng,  Lulu Han,  Yuwei Song,  Yutong Miao,  Xing Du,  Guohui Dang,  Dongmin Yang,  Bitao Zhong,  Changtao Jiang,  Wei Kong,  Qingbo Xu,  Juan Feng,  Xian Wang. Single-cell RNA sequencing reveals B cell-T cell interactions in vascular adventitia of hyperhomocysteinemia-accelerated atherosclerosis. Protein&Cell, 2022, 13(7): 540-547.  doi: 10.1007/s13238-021-00904-0
    [9] Fang Li,  Meng Luo,  Wenyang Zhou,  Jinliang Li,  Xiyun Jin,  Zhaochun Xu,  Liran Juan,  Zheng Zhang,  Yuou Li,  Renqiang Liu,  Yiqun Li,  Chang Xu,  Kexin Ma,  Huimin Cao,  Jingwei Wang,  Pingping Wang,  Zhigao Bu,  Qinghua Jiang. Single cell RNA and immune repertoire profiling of COVID-19 patients reveal novel neutralizing antibody. Protein&Cell, 2021, 12(10): 751-755.  doi: 10.1007/s13238-020-00807-6
    [10] Lei Gao,  Hongjie Zhang,  Jingyi Cui,  Lijuan Pei,  Shiqi Huang,  Yaning Mao,  Zhongmin Liu,  Ke Wei,  Hongming Zhu. Single-cell transcriptomics of cardiac progenitors reveals functional subpopulations and their cooperative crosstalk in cardiac repair. Protein&Cell, 2021, 12(2): 152-157.  doi: 10.1007/s13238-020-00788-6
    [11] Hanbo Li,  Xiaoyu Wei,  Li Zhou,  Weiqi Zhang,  Chen Wang,  Yang Guo,  Denghui Li,  Jianyang Chen,  Tianbin Liu,  Yingying Zhang,  Shuai Ma,  Congyan Wang,  Fujian Tan,  Jiangshan Xu,  Yang Liu,  Yue Yuan,  Liang Chen,  Qiaoran Wang,  Jing Qu,  Yue Shen,  Shanshan Liu,  Guangyi Fan,  Longqi Liu,  Xin Liu,  Yong Hou,  Guang-Hui Liu,  Ying Gu,  Xun Xu. Dynamic cell transition and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis. Protein&Cell, 2021, 12(1): 57-66.  doi: 10.1007/s13238-020-00763-1
    [12] Si Wang,  Yuxuan Zheng,  Qingqing Li,  Xiaojuan He,  Ruotong Ren,  Weiqi Zhang,  Moshi Song,  Huifang Hu,  Feifei Liu,  Guoqiang Sun,  Shuhui Sun,  Zunpeng Liu,  Yang Yu,  Piu Chan,  Guo-Guang Zhao,  Qi Zhou,  Guang-Hui Liu,  Fuchou Tang,  Jing Qu. Deciphering primate retinal aging at single-cell resolution. Protein&Cell, 2021, 12(11): 888-897.  doi: 10.1007/s13238-020-00791-x
    [13] Yujia Wang,  Yu Zhao,  Zixian Zhao,  Dandan Li,  Hao Nie,  Yufen Sun,  Xiaobei Feng,  Ting Zhang,  Yu Ma,  Jing Nie,  Guangyan Cai,  Xiangmei Chen,  Wei Zuo. Single-cell RNA-Seq analysis identified kidney progenitor cells from human urine. Protein&Cell, 2021, 12(4): 305-312.  doi: 10.1007/s13238-020-00816-5
    [14] Bin Zhou. Sinoatrial node pacemaker cells: cardiomyocyte-or neuron-like cells?. Protein&Cell, 2021, 12(7): 518-519.  doi: 10.1007/s13238-021-00827-w
    [15] Yugong Ho,  Peng Hu,  Michael T. Peel,  Sixing Chen,  Pablo G. Camara,  Douglas J. Epstein,  Hao Wu,  Stephen A. Liebhaber. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity. Protein&Cell, 2020, 11(8): 565-583.  doi: 10.1007/s13238-020-00705-x
    [16] Jiangping He,  Shuijiang Cai,  Huijian Feng,  Baomei Cai,  Lihui Lin,  Yuanbang Mai,  Yinqiang Fan,  Airu Zhu,  Huang Huang,  Junjie Shi,  Dingxin Li,  Yuanjie Wei,  Yueping Li,  Yingying Zhao,  Yuejun Pan,  He Liu,  Xiaoneng Mo,  Xi He,  Shangtao Cao,  FengYu Hu,  Jincun Zhao,  Jie Wang,  Nanshan Zhong,  Xinwen Chen,  Xilong Deng,  Jiekai Chen. Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients. Protein&Cell, 2020, 11(9): 680-687.  doi: 10.1007/s13238-020-00752-4
    [17] Xin Shao, Xiaoyan Lu, Jie Liao, Huajun Chen, Xiaohui Fan. New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data. Protein&Cell, 2020, 11(12): 866-880.  doi: 10.1007/s13238-020-00727-5
    [18] Jianwei Liu,  Mengdi Wang,  Le Sun,  Na Clara Pan,  Changjiang Zhang,  Junjing Zhang,  Zhentao Zuo,  Sheng He,  Qian Wu,  Xiaoqun Wang. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1. Protein&Cell, 2020, 11(6): 417-432.  doi: 10.1007/s13238-020-00720-y
    [19] Zhanping Shi,  Yanan Geng,  Jiping Liu,  Huina Zhang,  Liqiang Zhou,  Quan Lin,  Juehua Yu,  Kunshan Zhang,  Jie Liu,  Xinpei Gao,  Chunxue Zhang,  Yinan Yao,  Chong Zhang,  Yi E. Sun. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein&Cell, 2018, 9(4): 351-364.  doi: 10.1007/s13238-017-0450-2
    [20] Yuan Xu,  Fangqing Zhao. Single-cell metagenomics: challenges and applications. Protein&Cell, 2018, 9(5): 501-510.  doi: 10.1007/s13238-018-0544-5
  • PAC-0545-20957-CYH_supple.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1890) PDF downloads(166) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint